Abstract
Computer-based optimization simulations have made significant contributions to the improvement of intensity modulated radiation therapy (IMRT) treatment planning. Large amounts of data are typically involved in radiation therapy optimization problems. Regardless the formulation used, the problem size is always the biggest challenge to overcome. The most common strategy to address this problem is sampling which may have a significant impact on the quality of the results. There are few studies on sampling for optimization in radiation therapy, mostly devoted to propose new sampling approaches that accelerate IMRT optimization. However, the gain in computational time comes at a cost: as sampling becomes progressively coarse, the quality of the solution deteriorates. A clinical example of a head and neck case is used to discuss the influence of sampling in radiation therapy treatment design, emphasizing the influence on parotid sparing. Procedures on the choice of the most adequate sample rate are highlighted.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Acosta, R., Ehrgott, M., Holder, A., Nevin, D., Reese, J., Salter, B.: Comparing beam selection strategies in radiotherapy treatment design: the influence of dose point resolution. In: Alves, C., Pardalos, P., Vicente, L.N. (eds.) Optimization in Medicine. Springer Optimization and Its Applications, pp. 1–24. Springer, New York (2008)
Ai-dong, W., Yi-can, W., Sheng-xiang, T., Jiang-hui, Z.: Effect of CT Image-based Voxel Size On Monte Carlo Dose Calculation. In: Proc. 27th Annu. Conf. Engineering in Medicine and Biology, pp. 6449–6451. IEEE Press, Shanghai (2006)
Bahr, G.K., Kereiakes, J.G., Horwitz, H., Finney, R., Galvin, J., Goode, K.: The method of linear programming applied to radiation treatment planning. Radiology 91, 686–693 (1968)
Borffeld, T.: IMRT: a review and preview. Phys. Med. Biol. 51, 363–379 (2006)
Censor, Y.: Mathematical optimization for the inverse problem of intensity-modulated radiation therapy. In: Palta, J.R., Mackie, T.R. (eds.) Intensity-Modulated Radiation Therapy: The State of The Art, American Association of Physicists in Medicine (AAPM). Medical Physics Monograph, vol. (29), pp. 25–49. Medical Physics Publishing, Wisconsin (2003)
Cheong, K., Suh, T., Romeijn, H., Li, J., Dempsey, J.: Fast Nonlinear Optimization with Simple Bounds for IMRT Planning. Med. Phys. 32, 1975 (2005)
ILOG CPLEX, http://www.ilog.com/products/cplex
Craft, D., Halabi, T., Shih, H., Bortfeld, T.: Approximating convex Pareto surfaces in multiobjective radiotherapy planning. Med. Phys. 33, 3399–3407 (2006)
Deasy, J.O., Blanco, A.I., Clark, V.H.: CERR: A Computational Environment for Radiotherapy Research. Med. Phys. 30, 979–985 (2003)
Deasy, J.O., Lee, E.K., Bortfeld, T., Langer, M., Zakarian, K., Alaly, J., Zhang, Y., Liu, H., Mohan, R., Ahuja, R., Pollack, A., Purdy, J., Rardin, R.: A collaboratory for radiation theraphy planning optimization research. Ann. Oper. Res. 148, 55–63 (2006)
Ehrgott, M., Guler, C., Hammacher, H.W., Shao, L.: Mathematical optimization in intensity modulated radiation therapy. 4OR 6, 199–262 (2008)
Ferris, M.C., Lim, J.-H., Shepard, D.M.: Optimization approaches for treatment planning on a Gamma Knife. SIAM J. Optim. 13, 921–937 (2003)
Ferris, M.C., Lim, J.-H., Shepard, D.M.: Radiosurgery treatment planning via nonlinear programming. Ann. of Oper. Res. 119, 247–260 (2003)
Ferris, M.C., Einarsson, R., Jiang, Z., Shepard, D.M.: Sampling issues for optimization in radiotherapy. Ann. of Oper. Res. 148, 95–115 (2006)
Holder, A., Salter, B.: A tutorial on radiation oncology and optimization. In: Greenber, H. (ed.) Emerging Methodologies and Applications in Operations Research. Kluwer Academic Press, Boston (2004)
Lee, E.K., Fox, T., Crocker, I.: Simultaneous beam geometry and intensity map optimization in intensity-modulated radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 64, 301–320 (2006)
Lee, E.K., Fox, T., Crocker, I.: Integer programing applied to intensity-modulated radiation therapy treatment planning. Ann. Oper. Res. 119, 165–181 (2003)
Lim, G.J., Ferris, M.C., Wright, S.J., Shepard, D.M., Earl, M.A.: An optimization framework for conformal radiation treatment planning. INFORMS J. Comput. 19, 366–380 (2007)
Lim, G.J., Lee, E.K.: Optimization in Medicine and Biology. Auerbach Publications, Taylor and Francis, New York (2008)
Lim, G.J., Choi, J., Mohan, R.: Iterative solution methods for beam angle and fluence map optimization in intensity modulated radiation therapy planning. OR Spectrum 30, 289–309 (2008)
Martin, B.C., Bortfeld, T.R., Castanon, D.A.: Accelerating IMRT optimization by voxel sampling. Phys. Med. Biol. 52, 7211–7228 (2007)
MATLAB, The MathWorks Inc., http://www.mathworks.com
Misic, V.V., Aleman, D.M., Sharpe, M.B.: Neighborhood search approaches to non-coplanar beam orientation optimization for total marrow irradiation using IMRT. Eur. J. Oper. Res. 3, 522–527 (2010)
PLanUNC, http://planunc.radonc.unc.edu
Preciado-Walters, F., Langer, M.P., Rardin, R.L., Thai, V.: Column generation for IMRT cancer therapy optimization with implementable segments. Ann. Oper. Res. 148, 65–79 (2006)
Rocha, H., Dias, J.M.: On the optimization of radiation therapy planning. Inescc Research Report (15/2009), http://www.inescc.pt/documentos/15_2009.PDF
Romeijn, H.E., Ahuja, R.K., Dempsey, J.F., Kumar, A.: A new linear programming approach to radiation therapy planning problems. Oper. Res. 54, 201–216 (2006)
Romeijn, H.E., Ahuja, R.K., Dempsey, J.F., Kumar, A.: A column generation approach to radiation therapy treatment planning using aperture modulation. SIAM J. Optim. 15, 838–862 (2005)
Romeijn, H.E., Ahuja, R.K., Dempsey, J.F., Kumar, A., Li, J.: A novel linear programming approach to fluence map optimization for intensity modulated radiation therapy treatment planing. Phys. Med. Biol. 48, 3521–3542 (2003)
Romeijn, H.E., Dempsey, J.F., Li, J.: A unifying framework for multi-criteria fluence map optimization models. Phys. Med. Biol. 49, 1991–2013 (2004)
Spirou, S., Chui, C.-S.: A gradient inverse planning algoritm with dose-volume constraints. Med. Phys. 25, 321–333 (1998)
Thieke, C., Nill, S., Oelfke, U., Bortfeld, T.: Acceleration of intensity-modulated radiotherapy dose calculation by importance sampling of the calculation matrices. Med. Phys. 29, 676–681 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Rocha, H., Dias, J.M., Ferreira, B.C., do Carmo Lopes, M. (2011). Influence of Sampling in Radiation Therapy Treatment Design. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds) Computational Science and Its Applications - ICCSA 2011. ICCSA 2011. Lecture Notes in Computer Science, vol 6784. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21931-3_18
Download citation
DOI: https://doi.org/10.1007/978-3-642-21931-3_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21930-6
Online ISBN: 978-3-642-21931-3
eBook Packages: Computer ScienceComputer Science (R0)