Abstract
Information diffusion over a social network is analyzed by modeling the successive interactions of neighboring nodes as probabilistic processes of state changes. We address the problem of estimating parameters (diffusion probability and time-delay parameter) of the probabilistic model as a function of the node attributes from the observed diffusion data by formulating it as the maximum likelihood problem. We show that the parameters are obtained by an iterative updating algorithm which is efficient and is guaranteed to converge. We tested the performance of the learning algorithm on three real world networks assuming the attribute dependency, and confirmed that the dependency can be correctly learned. We further show that the influence degree of each node based on the link-dependent diffusion probabilities is substantially different from that obtained assuming a uniform diffusion probability which is approximated by the average of the true link-dependent diffusion probabilities.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Domingos, P.: Mining social networks for viral marketing. IEEE Intell. Syst. 20, 80–82 (2005)
Goldenberg, J., Libai, B., Muller, E.: Talk of the network: A complex systems look at the underlying process of word-of-mouth. Marketing Letters 12, 211–223 (2001)
Gomez-Rodriguez, M., Leskovec, J., Krause, A.: Inferring networks of diffusion and influence. In: KDD, pp. 1019–1028 (2010)
Gruhl, D., Guha, R., Liben-Nowell, D., Tomkins, A.: Information diffusion through blogspace. SIGKDD Explorations 6, 43–52 (2004)
Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through a social network. In: KDD, pp. 137–146 (2003)
Kimura, M., Saito, K., Motoda, H.: Minimizing the spread of contamination by blocking links in a network. In: AAAI 2008, pp. 1175–1180 (2008)
Kimura, M., Saito, K., Motoda, H.: Blocking links to minimize contamination spread in a social network. ACM Trans. Knowl. Discov. Data 3, 9:1–9:23 (2009)
Kimura, M., Saito, K., Nakano, R.: Extracting influential nodes for information diffusion on a social network. In: AAAI 2007, pp. 1371–1376 (2007)
Kimura, M., Saito, K., Nakano, R., Motoda, H.: Extracting influential nodes on a social network for information diffusion. Data Min. and Knowl. Disc. 20, 70–97 (2010)
Kimura, M., Saito, K., Ohara, K., Motoda, H.: Learning to predict opinion share in social networks. In: AAAI 2010, pp. 1364–1370 (2010)
Klimt, B., Yang, Y.: The enron corpus: A new dataset for email classification research. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 217–226. Springer, Heidelberg (2004)
Leskovec, J., Adamic, L.A., Huberman, B.A.: The dynamics of viral marketing. In: EC 2006, pp. 228–237 (2006)
Myers, S.A., Leskovec, J.: On the convexity of latent social network inference. In: Proceedings of Neural Information Processing Systems (NIPS)
Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003)
Newman, M.E.J., Forrest, S., Balthrop, J.: Email networks and the spread of computer viruses. Phys. Rev. E 66, 035101 (2002)
Saito, K., Kimura, M., Nakano, R., Motoda, H.: Finding influential nodes in a social network from information diffusion data. In: SBP 2009, pp. 138–145 (2009)
Saito, K., Kimura, M., Ohara, K., Motoda, H.: Learning continuous-time information diffusion model for social behavioral data analysis. In: Zhou, Z.-H., Washio, T. (eds.) ACML 2009. LNCS, vol. 5828, pp. 322–337. Springer, Heidelberg (2009)
Saito, K., Kimura, M., Ohara, K., Motoda, H.: Behavioral analyses of information diffusion models by observed data of social network. In: Chai, S.-K., Salerno, J.J., Mabry, P.L. (eds.) SBP 2010. LNCS, vol. 6007, pp. 149–158. Springer, Heidelberg (2010)
Saito, K., Kimura, M., Ohara, K., Motoda, H.: Selecting information diffusion models over social networks for behavioral analysis. In: ECML PKDD 2010, pp. 180–195 (2010)
Tong, H., Prakash, B.A., Tsoourakakis, C., Eliassi-Rad, T., Faloutsos, C., Chau, D.H.: On the vulnerability of large graphs. In: Perner, P. (ed.) ICDM 2010. LNCS, vol. 6171, pp. 1091–1096. Springer, Heidelberg (2010)
Watts, D.J.: A simple model of global cascades on random networks. PNAS 99, 5766–5771 (2002)
Watts, D.J., Dodds, P.S.: Influence, networks, and public opinion formation. J. Cons. Res. 34, 441–458 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Saito, K., Ohara, K., Yamagishi, Y., Kimura, M., Motoda, H. (2011). Learning Diffusion Probability Based on Node Attributes in Social Networks. In: Kryszkiewicz, M., Rybinski, H., Skowron, A., Raś, Z.W. (eds) Foundations of Intelligent Systems. ISMIS 2011. Lecture Notes in Computer Science(), vol 6804. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21916-0_18
Download citation
DOI: https://doi.org/10.1007/978-3-642-21916-0_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21915-3
Online ISBN: 978-3-642-21916-0
eBook Packages: Computer ScienceComputer Science (R0)