[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Learning Diffusion Probability Based on Node Attributes in Social Networks

  • Conference paper
Foundations of Intelligent Systems (ISMIS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6804))

Included in the following conference series:

Abstract

Information diffusion over a social network is analyzed by modeling the successive interactions of neighboring nodes as probabilistic processes of state changes. We address the problem of estimating parameters (diffusion probability and time-delay parameter) of the probabilistic model as a function of the node attributes from the observed diffusion data by formulating it as the maximum likelihood problem. We show that the parameters are obtained by an iterative updating algorithm which is efficient and is guaranteed to converge. We tested the performance of the learning algorithm on three real world networks assuming the attribute dependency, and confirmed that the dependency can be correctly learned. We further show that the influence degree of each node based on the link-dependent diffusion probabilities is substantially different from that obtained assuming a uniform diffusion probability which is approximated by the average of the true link-dependent diffusion probabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Domingos, P.: Mining social networks for viral marketing. IEEE Intell. Syst. 20, 80–82 (2005)

    Article  Google Scholar 

  2. Goldenberg, J., Libai, B., Muller, E.: Talk of the network: A complex systems look at the underlying process of word-of-mouth. Marketing Letters 12, 211–223 (2001)

    Article  Google Scholar 

  3. Gomez-Rodriguez, M., Leskovec, J., Krause, A.: Inferring networks of diffusion and influence. In: KDD, pp. 1019–1028 (2010)

    Google Scholar 

  4. Gruhl, D., Guha, R., Liben-Nowell, D., Tomkins, A.: Information diffusion through blogspace. SIGKDD Explorations 6, 43–52 (2004)

    Article  Google Scholar 

  5. Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through a social network. In: KDD, pp. 137–146 (2003)

    Google Scholar 

  6. Kimura, M., Saito, K., Motoda, H.: Minimizing the spread of contamination by blocking links in a network. In: AAAI 2008, pp. 1175–1180 (2008)

    Google Scholar 

  7. Kimura, M., Saito, K., Motoda, H.: Blocking links to minimize contamination spread in a social network. ACM Trans. Knowl. Discov. Data 3, 9:1–9:23 (2009)

    Google Scholar 

  8. Kimura, M., Saito, K., Nakano, R.: Extracting influential nodes for information diffusion on a social network. In: AAAI 2007, pp. 1371–1376 (2007)

    Google Scholar 

  9. Kimura, M., Saito, K., Nakano, R., Motoda, H.: Extracting influential nodes on a social network for information diffusion. Data Min. and Knowl. Disc. 20, 70–97 (2010)

    Article  MathSciNet  Google Scholar 

  10. Kimura, M., Saito, K., Ohara, K., Motoda, H.: Learning to predict opinion share in social networks. In: AAAI 2010, pp. 1364–1370 (2010)

    Google Scholar 

  11. Klimt, B., Yang, Y.: The enron corpus: A new dataset for email classification research. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 217–226. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Leskovec, J., Adamic, L.A., Huberman, B.A.: The dynamics of viral marketing. In: EC 2006, pp. 228–237 (2006)

    Google Scholar 

  13. Myers, S.A., Leskovec, J.: On the convexity of latent social network inference. In: Proceedings of Neural Information Processing Systems (NIPS)

    Google Scholar 

  14. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Newman, M.E.J., Forrest, S., Balthrop, J.: Email networks and the spread of computer viruses. Phys. Rev. E 66, 035101 (2002)

    Article  Google Scholar 

  16. Saito, K., Kimura, M., Nakano, R., Motoda, H.: Finding influential nodes in a social network from information diffusion data. In: SBP 2009, pp. 138–145 (2009)

    Google Scholar 

  17. Saito, K., Kimura, M., Ohara, K., Motoda, H.: Learning continuous-time information diffusion model for social behavioral data analysis. In: Zhou, Z.-H., Washio, T. (eds.) ACML 2009. LNCS, vol. 5828, pp. 322–337. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  18. Saito, K., Kimura, M., Ohara, K., Motoda, H.: Behavioral analyses of information diffusion models by observed data of social network. In: Chai, S.-K., Salerno, J.J., Mabry, P.L. (eds.) SBP 2010. LNCS, vol. 6007, pp. 149–158. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  19. Saito, K., Kimura, M., Ohara, K., Motoda, H.: Selecting information diffusion models over social networks for behavioral analysis. In: ECML PKDD 2010, pp. 180–195 (2010)

    Google Scholar 

  20. Tong, H., Prakash, B.A., Tsoourakakis, C., Eliassi-Rad, T., Faloutsos, C., Chau, D.H.: On the vulnerability of large graphs. In: Perner, P. (ed.) ICDM 2010. LNCS, vol. 6171, pp. 1091–1096. Springer, Heidelberg (2010)

    Google Scholar 

  21. Watts, D.J.: A simple model of global cascades on random networks. PNAS 99, 5766–5771 (2002)

    Google Scholar 

  22. Watts, D.J., Dodds, P.S.: Influence, networks, and public opinion formation. J. Cons. Res. 34, 441–458 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Saito, K., Ohara, K., Yamagishi, Y., Kimura, M., Motoda, H. (2011). Learning Diffusion Probability Based on Node Attributes in Social Networks. In: Kryszkiewicz, M., Rybinski, H., Skowron, A., Raś, Z.W. (eds) Foundations of Intelligent Systems. ISMIS 2011. Lecture Notes in Computer Science(), vol 6804. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21916-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21916-0_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21915-3

  • Online ISBN: 978-3-642-21916-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics