[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Learning Inverted Dirichlet Mixtures for Positive Data Clustering

  • Conference paper
Rough Sets, Fuzzy Sets, Data Mining and Granular Computing (RSFDGrC 2011)

Abstract

In this paper, we propose a statistical model to cluster positive data. The proposed model adopts a mixture of inverted Dirichlet distributions and is learned using expectation-maximization (EM) for parameters estimation and the minimum message length criterion (MML) for model selection. Experimental results using both synthetic and real data are presented to show the advantages of the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Everitt, B.: Cluster Analysis. Arnold Publishers (2001)

    Google Scholar 

  2. McLachlan, G.J., Peel, D.: Finite Mixture Models. Wiley, New York (2000)

    Book  MATH  Google Scholar 

  3. Bouguila, N., Ziou, D.: Using unsupervised learning of a finite Dirichlet mixture model to improve pattern recognition applications. Pattern Recognition Letters 26(12), 1916–1925 (2005)

    Article  Google Scholar 

  4. Bouguila, N., Ziou, D.: Unsupervised Selection of a Finite Dirichlet Mixture Model: An MML-Based Approach. IEEE Transactions on Knowledge and Data Engineering 18(8), 993–1009 (2006)

    Article  Google Scholar 

  5. Wallace, C.S.: Statistical and Inductive Inference by Minimum Message Length. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  6. Tiao, G.G., Cuttman, I.: The Inverted Dirichlet Distribution with Applications. Journal of the American Statistical Association 60(311), 793–805 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  7. Figueiredo, M.A.T., Jain, A.K.: Unsupervised Learning of Finite Mixture Models. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(3), 4–37 (2002)

    Article  Google Scholar 

  8. Bouguila, N., Ziou, D., Vaillancourt, J.: Unsupervised Learning of a Finite Mixture Model Based on the Dirichlet Distribution and its Application. IEEE Transactions on Image Processing 13(11), 1533–1543 (2004)

    Article  Google Scholar 

  9. Murphy, P.M., Aha, D.W.: UCI Repository of Machine Learning Databases. Department of Information and Computer Science, University of California, Irvine (1998), http://www.ics.ci.edu/mlearn/MLRepository.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bdiri, T., Bouguila, N. (2011). Learning Inverted Dirichlet Mixtures for Positive Data Clustering. In: Kuznetsov, S.O., Ślęzak, D., Hepting, D.H., Mirkin, B.G. (eds) Rough Sets, Fuzzy Sets, Data Mining and Granular Computing. RSFDGrC 2011. Lecture Notes in Computer Science(), vol 6743. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21881-1_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21881-1_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21880-4

  • Online ISBN: 978-3-642-21881-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics