[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Temperature Prediction in Electric Arc Furnace with Neural Network Tree

  • Conference paper
Artificial Neural Networks and Machine Learning – ICANN 2011 (ICANN 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6792))

Included in the following conference series:

  • 2501 Accesses

Abstract

This paper presents a neural network tree regression system with dynamic optimization of input variable transformations and post-training optimization. The decision tree consists of MLP neural networks, which optimize the split points and at the leaf level predict final outputs. The system is designed for regression problems of big and complex datasets. It was applied to the problem of steel temperature prediction in the electric arc furnace in order to decrease the process duration at one of the steelworks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Yan-Qing, Z., Fu-lai, C.: A Fuzzy Neural Network Tree with Heuristic Backpropagation Learning. Neural Networks (2002)

    Google Scholar 

  2. Schetinin, V.: A Neural Network Decision Tree for Learning Concepts from EEG Data. In: NIMIA-SC (2001)

    Google Scholar 

  3. Golea, M., Marchand, M.: A Growth Algorithm for Neural Network Decision Trees. Europhysics Lett. (1990)

    Google Scholar 

  4. Foresti, G.L., Micheloni, C.: Generalized Neural Trees for Pattern Classification. IEEE Transactions on Neural Networks 13(6) (2002)

    Article  Google Scholar 

  5. Fong, S., et al.: Applying a Hybrid Model of Neural Network and Decision Tree Classifier for Predicting University Admission. In: ICICS (2009)

    Google Scholar 

  6. Chen, Y., et al.: Time-series forecasting using flexible neural tree model. Information Sciences (2004)

    Google Scholar 

  7. Kordos, M., Blachnik, M., et al.: A Hybrid System with Regression Trees in Steelmaking Process. In: HAIS (2011)

    Google Scholar 

  8. Wieczorek, T., Kordos, M.: Neural Network-based Prediction of Additives in the Steel Refinement Process. Computer Methods in Materials Science 10(1) (2010)

    Google Scholar 

  9. Wieczorek, T., Blachnik, M., Maczka, K.: Building a model for time reduction of steel scrap meltdown in the electric arc furnace (EAF): General strategy with a comparison of feature selection methods. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 1149–1159. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Kendall, M., et al.: A window into the electric arc furnace, a continuous temperature sensor measuring the complete furnace cycle. Archives of Metallurgy and Materials 53(2), 451–454 (2008)

    Google Scholar 

  11. Millman, M.S., et al.: Direct observation of the melting process in an EAF with a closed slag door. Archives of Metallurgy and Materials 53(2), 463–468 (2008)

    Google Scholar 

  12. Wendelstorf, J.: Analysis of the EAF operation by process modeling. Archives of Metallurgy and Materials 53(2), 385–390 (2008)

    Google Scholar 

  13. Fernandez, J., et al.: Online estimation of electric arc furnace tap temperature by using fuzzy neural networks. Engineering Applications of Artificial Intelligence 21 (2008)

    Google Scholar 

  14. Angiulli, F., Pizzuti, C.: Fast outlier detection in high dimensional spaces. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) PKDD 2002. LNCS (LNAI), vol. 2431, pp. 15–27. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  15. Kordos, M., Duch, W.: Variable step search algorithm for feedforward networks. Neurocomputing 71(13-15), 2470–2480 (2008)

    Article  Google Scholar 

  16. Setiono, R., Thong, J.: An approach to generate rules from neural networks for regression problems. European Journal of Operational Research 155(1) (2004)

    Article  Google Scholar 

  17. Czajkowski, M., Krętowski, M.: Globally induced model trees: An evolutionary approach. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 324–333. Springer, Heidelberg (2010)

    Google Scholar 

  18. Dataset, www.kordos.com/his.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kordos, M., Blachnik, M., Wieczorek, T. (2011). Temperature Prediction in Electric Arc Furnace with Neural Network Tree. In: Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2011. ICANN 2011. Lecture Notes in Computer Science, vol 6792. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21738-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21738-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21737-1

  • Online ISBN: 978-3-642-21738-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics