[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Pervasive Sensing to Model Political Opinions in Face-to-Face Networks

  • Conference paper
Pervasive Computing (Pervasive 2011)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6696))

Included in the following conference series:

Abstract

Exposure and adoption of opinions in social networks are important questions in education, business, and government. We describe a novel application of pervasive computing based on using mobile phone sensors to measure and model the face-to-face interactions and subsequent opinion changes amongst undergraduates, during the 2008 US presidential election campaign. We find that self-reported political discussants have characteristic interaction patterns and can be predicted from sensor data. Mobile features can be used to estimate unique individual exposure to different opinions, and help discover surprising patterns of dynamic homophily related to external political events, such as election debates and election day. To our knowledge, this is the first time such dynamic homophily effects have been measured. Automatically estimated exposure explains individual opinions on election day. Finally, we report statistically significant differences in the daily activities of individuals that change political opinions versus those that do not, by modeling and discovering dominant activities using topic models. We find people who decrease their interest in politics are routinely exposed (face-to-face) to friends with little or no interest in politics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abdelzaher, T., Anokwa, Y., Boda, P., Burke, J., Estrin, D., Guibas, L., Kansal, A., Madden, S., Reich, J.: Mobiscopes for human spaces. IEEE Pervasive Computing - Mobile and Ubiquitous Systems 6(2) (2007)

    Google Scholar 

  2. Adamic, L., Glance, N.: The political blogosphere and the 2004 US election: divided they blog. In: Proc. of the 3rd Intl. Workshop on Link Discovery (2005)

    Google Scholar 

  3. Agarwal, N., Liu, H.: Modeling and Data Mining in Blogosphere, vol. 1. Morgan & Claypool Publishers, San Francisco (2009)

    Google Scholar 

  4. Avancha, S., Baxi, A., Kotz, D.: Privacy in mobile technology for personal healthcare. Submitted to ACM Computing Surveys (2009)

    Google Scholar 

  5. Bernard, H.R., Killworth, P., Kronenfeld, D., Sailer, L.: The Problem of Informant Accuracy: The Validity of Retrospective Data. Annual Reviews in Anthropology (1984)

    Google Scholar 

  6. Blei, D.M., Ng, A.Y., Jordan, M.I., Lafferty, J.: Latent dirichlet allocation. JMLR 3 (2003)

    Google Scholar 

  7. Boyd, D., Ellison, N.: Social network sites: Definition, history, and scholarship. Journal of Computer Mediated Communication 13(1), 210 (2007)

    Article  Google Scholar 

  8. Brewer, D., Webster, C.: Forgetting of friends and its effects on measuring friendship networks. Social Networks 21(4), 361–373 (2000)

    Article  Google Scholar 

  9. Burt, R.: Social contagion and innovation: Cohesion versus structural equivalence. American Journal of Sociology (1987)

    Google Scholar 

  10. Choudhury, T.: Sensing and Modeling Human Networks. PhD thesis, M.I.T (2003)

    Google Scholar 

  11. Choudhury, T.: Characterizing social networks using the sociometer. Association of Computational Social and Organizational Science (2004)

    Google Scholar 

  12. Choudhury, T., Basu, S.: Modeling Conversational Dynamics as a Mixed Memory Markov Process. In: NIPS (2004)

    Google Scholar 

  13. Bishop, C.: Pattern Recognition and Machine Learning. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  14. Currarini, S., Jackson, M., Pin, P.: An Economic Model of Friendship: Homophily, Minorities, and Segregation. Econometrica 77(4), 1003–1045 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Eagle, N., Macy, M., Claxton, R.: Network Diversity and Economic Development. Science 328(5981), 1029–1031 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Eagle, N., Pentland, A., Lazer, D.: Inferring Social Network Structure Using Mobile Phone Data. PNAS 106(36), 15274–15278 (2009)

    Article  Google Scholar 

  17. Miluzzo, E., et al.: Darwin Phones: The Evolution of Sensing and Inference on Mobile Phones. In: Mobisys (2010)

    Google Scholar 

  18. Farrahi, K., Gatica-Perez, D.: What did you do today? discovering daily routines from large-scale mobile data. ACM MM (2008)

    Google Scholar 

  19. Farrahi, K., Gatica-Perez, D.: Probabilistic mining of socio-geographic routines from mobile phone data. IEEE J-STSP 4(4), 746–755 (2010)

    Google Scholar 

  20. Freund, Y., Schapire, R.E.: A short introduction to boosting. Japonese Society for Artificial Intelligence 5, 771–780 (1999)

    Google Scholar 

  21. Friedkin, N.E.: A Structural Theory of Social Influence. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  22. Gonzalez, M., Hidalgo, C., Barabasi, A.-L.: Understanding Individual Human Mobility Patterns. Nature 453, 779–782 (2008)

    Article  Google Scholar 

  23. Granovetter, M.: Threshold models of collective behavior. American Journal of Sociology 83, 1420–1443 (1978)

    Article  Google Scholar 

  24. Guo, F., Hanneke, S., Fu, W., Xing, E.P.: Recovering temporally rewiring networks: A model-based approach. In: ICML (2007)

    Google Scholar 

  25. Huckfeldt, R., Sprague, J.: Discussant Effects on Vote Choice: Intimacy, Structure and Interdependence. The Journal of Politics 53, 122–158 (1991)

    Article  Google Scholar 

  26. Hunter, D.R., Handcock, M.S.: Inference in curved exponential family models for networks. Journal of Computational and Graphical Statistics 15, 565–583 (2006)

    Article  MathSciNet  Google Scholar 

  27. Huynh, T., Fritz, M., Schiele, B.: Discovery of activity patterns using topic models. In: UbiComp, Seoul, Korea, pp. 10–19 (2008)

    Google Scholar 

  28. Intentionally Blank. Intentionally blank

    Google Scholar 

  29. Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the Spread of Influence in a Social Network. In: KDD 2003, Washington DC (2003)

    Google Scholar 

  30. Laibowitz, M., Gips, J., Aylward, R., Pentland, A., Paradiso, J.: A sensor network for social dynamics. In: IPSN, p. 491 (2006)

    Google Scholar 

  31. Lazarsfeld, P., Merton, R.K.: Friendship as a Social Process: A Substantive and Methodological Analysis. Freedom and Control in Modern Society (1954)

    Google Scholar 

  32. Lazer, D., Rubineau, B., Katz, N., Chetkovich, C., Neblo, M.A.: Networks and political attitudes: Structure, influence, and co-evolution. Working paper series (September 2008)

    Google Scholar 

  33. Leskovec, J., Backstrom, L., Kleinberg, J.: Meme-tracking and the Dynamics of the News Cycle. In: ACM SIGKDD (2009)

    Google Scholar 

  34. Liu, H., Salerno, J., Young, M.: Social Computing, Behavioral Modeling and Prediction. Springer, Heidelberg (2008)

    Book  Google Scholar 

  35. Madan, A., Pentland, A.: Vibephones: Socially aware mobile phones. In: ISWC (2006)

    Google Scholar 

  36. Madan, A., Pentland, A.: Modeling Social Diffusion Phenomena Using Reality Mining. In: AAAI Spring Symposium on Human Behavior Modeling (2009)

    Google Scholar 

  37. Mccallum, A., Corrada-emmanuel, A., Wang, X.: The author-recipient-topic model for topic and role discovery in social networks: Experiments with enron and academic email. Technical report (2004)

    Google Scholar 

  38. McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a Feather: Homophily in Social Networks. Annual Review of Sociology 27, 415–444 (2001)

    Article  Google Scholar 

  39. Moturu, S.: Quantifying the Trustworthiness of Social Media Content: Content Analysis for the Social Web. Lambert Academic Publishing (2010)

    Google Scholar 

  40. Nallapati, R., Cohen, W.: Link-plsa-lda: A new unsupervised model for topics and influence in blogs. In: ICWSM (2008)

    Google Scholar 

  41. Olguin Olguin, D., Gloor, P., Pentland, A.: Wearable sensors for pervasive healthcare management. PCT Healthcare (2009)

    Google Scholar 

  42. Olguin Olguin, D., Waber, B., Kim, T., Mohan, A., Ara, K., Pentland, A.: Sensible organizations: Technology and methodology for automatically measuring organizational behavior. IEEE Transactions on Systems, Man, and Cybernetics-B (2009)

    Google Scholar 

  43. Pentland, A.: Socially aware computation and communication. In: ICMI (2005)

    Google Scholar 

  44. Richardson, M., Domingas, P.: Markob logic networks. Machine Learning (2006)

    Google Scholar 

  45. Robins, G., Snijders, T., Wang, P., Handcock, M., Pattison, P.: Recent developments in exponential random graph (p*) models for social networks. Social Networks 29(2), 192–215 (2007)

    Article  Google Scholar 

  46. Roy, D., Patel, R., DeCamp, P., Kubat, R., Fleischman, M., Roy, B., Mavridis, N., Tellex, S., Salata, A., Guinness, J., Levit, M., Gorniak, P.: The human speechome project. In: Vogt, P., Sugita, Y., Tuci, E., Nehaniv, C.L. (eds.) EELC 2006. LNCS (LNAI), vol. 4211, pp. 192–196. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  47. Steyvers, M., Smyth, P., Rosen-Zvi, M., Groffiths, T.: Probabilistic author-topic models for information discovery. In: ACM SIGKDD, pp. 306–315 (2004)

    Google Scholar 

  48. Wang, F., Carley, K., Zeng, D., Mao, W.: Social computing: From social informatics to social intelligence. IEEE Intelligent Systems, 79–83 (2007)

    Google Scholar 

  49. Wang, X., Mohanty, N., Mccallum, A.: Group and topic discovery from relations and text. In: ACM SIGKDD (Workshop on Link Discovery) (2005)

    Google Scholar 

  50. Wyatt, D., Choudhury, T., Bilmes, J.: Discovering Long Range Properties of Social Networks with Multi-Valued Time-Inhomogeneous Models. In: AAAI (2010)

    Google Scholar 

  51. Yano, T., Cohen, W.W., Smith, N.A.: Predicting response to political blog posts with topic models. In: NAACL 2009, pp. 477–485 (2009)

    Google Scholar 

  52. Zeng, D., Wang, F., Carley, K.: Guest Editors’ Introduction: Social Computing. IEEE Intelligent Systems, 20–22 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Madan, A., Farrahi, K., Gatica-Perez, D., Pentland, A.(. (2011). Pervasive Sensing to Model Political Opinions in Face-to-Face Networks. In: Lyons, K., Hightower, J., Huang, E.M. (eds) Pervasive Computing. Pervasive 2011. Lecture Notes in Computer Science, vol 6696. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21726-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21726-5_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21725-8

  • Online ISBN: 978-3-642-21726-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics