[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Determining Parameters of Key Predistribution Schemes via Linear Codes in Wireless Sensor Networks

  • Conference paper
Information Security and Cryptology (Inscrypt 2010)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 6584))

Included in the following conference series:

Abstract

In INSCRYPT 2008, Ruj and Roy proposed deterministic key predistribution schemes using codes. Particularly, they used Reed Solomon codes to present key predistribution schemes. They calculate the connectiviey and resiliency of the network when the schemes are based on Reed Solomon codes. However, the connectivity and resiliency of the network for the schemes using other codes haven’t been calculated so far. In the present paper, we will determine the key parameters of predistribution schemes via linear codes in wireless sensor networks. We calculate the connective probability, the probability fail(1) and the upper bound of the fraction of links broken when s nodes are compromised. We use the theory of matroid. We find that it is very surprising that these parameters can be calculated by making use of the chromatic polynomial of the matroid associated to the codes used in the resulting schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barg, A.: On some polynomials related to weight enumerators of linear codes. SIAM J. Discrete Math. 15, 155–164 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Blackburn, S.R., Etzion, T., Martin, K.M., Paterson, M.B.: Efficient key predistribution for grid-based wireless sensor networks. In: Safavi-Naini, R. (ed.) ICITS 2008. LNCS, vol. 5155, pp. 54–69. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Britz, T.: MacWilliams identities and matroid polynomials. Electron. J. Combin. 19, Research Paper 19, 16 (2002)

    MathSciNet  MATH  Google Scholar 

  4. Cameron, P.J.: Cycle index, weight enumerator, and Tutte polynomial. Electron. J. Combin. 9, Note 2, 10 (2002)

    MathSciNet  MATH  Google Scholar 

  5. Çamtepe, S.A., Yener, B.: Combinatorial design of key distribution mechanisms for wireless sensor networks. In: Samarati, P., Ryan, P.Y.A., Gollmann, D., Molva, R. (eds.) ESORICS 2004. LNCS, vol. 3193, pp. 293–308. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Chakrabarti, D., Maitra, S., Roy, B.: A key pre-distribution scheme for wireless sensor networks: merging blocks in combinatorial design. Int. J. Inf. Security 5, 105–114 (2006)

    Article  MATH  Google Scholar 

  7. Chan, H., Perrig, A., Song, D.: Random key predistribution schemes for sensor networks. In: IEEE Symposium on Research in Security and Privacy, Washington DC, pp. 197–213 (2003)

    Google Scholar 

  8. Dong, J., Pei, D., Wang, X.: A key predistribution scheme based on 3-designs. In: Pei, D., Yung, M., Lin, D., Wu, C. (eds.) Inscrypt 2007. LNCS, vol. 4990, pp. 81–92. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Dong, J., Pei, D., Wang, X.: A class of key predistribution schemes based on orthogonal arrays. JCST 23(5), 825–831 (2008)

    MathSciNet  Google Scholar 

  10. Du, W., Deng, J., Han, Y.S., et al.: A pairwise key predistribution scheme for wireless sensors. In: Proceeding of the 10th ACM Conference on Computer and Communications Security (CCS), Washington DC, pp. 42–51 (2003)

    Google Scholar 

  11. Eschenauer, L., Gligor, V.B.: A key-management scheme for distributed sensor networks. In: Proceedings of the 9th ACM Conference on Computer and Communications Security, Washington, DC, USA, pp. 41–47 (2002)

    Google Scholar 

  12. Greene, C.: Weight enumeration and the geometry of linear codes. Studies in Appl. Math. 55, 119–128 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lee, J., Stinson, D.R.: On the construction of practical key predistribution schemes for distributed sensor networks using combinatorial designs. ACM Trans. Inf. Syst. Secur. 11(2) (2008)

    Google Scholar 

  14. Lee, J., Stinson, D.R.: A combinatorial approach to key predistribution for distributed sensor networks. In: IEEE Wireless Communications and Networking Conference, WCNC 2005, New Orleans, LA, USA, pp. 1200–1205 (2005)

    Google Scholar 

  15. Lee, J., Stinson, D.R.: Deterministic key predistribution schemes for distributed sensor networks. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 294–307. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  16. Liu, D., Ning, P.: Establishing pairwise keys in distributed sensor networks. In: Jajodia, S., Atluri, V., Jaeger, T. (eds.) ACM Conference on Computer and Communications Security, pp. 52–61. ACM, New York (2003)

    Google Scholar 

  17. Martin, K.M.: On the Applicability of Combinatorial Designs to key predistribution for wireless sensor networks. In: Chee, Y.M., Li, C., Ling, S., Wang, H., Xing, C. (eds.) IWCC 2009. LNCS, vol. 5557, pp. 124–145. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  18. Oxley, J.G.: Matroid Theory. Oxford University Press, Oxford (1992)

    MATH  Google Scholar 

  19. Ruj, S., Roy, B.: Key predistribution schemes using codes in wireless sensor networks. In: Yung, M., Liu, P., Lin, D. (eds.) Inscrypt 2008. LNCS, vol. 5487, pp. 275–288. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  20. Ruj, S., Roy, B.: Key establishment algorithms for some deterministic key predistribution schemes. In: Rodrguez, A., Yage, M., Fernndez-Medina, E. (eds.) Workshop on Security In Information Systems, INSTICC (2008)

    Google Scholar 

  21. Ruj, S., Roy, B.: Key predistribution using partially balanced designs in wireless sensor networks. In: Stojmenovic, I., Thulasiram, R.K., Yang, L.T., Jia, W., Guo, M., de Mello, R.F. (eds.) ISPA 2007. LNCS, vol. 4742, pp. 431–445. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  22. Pei, D.Y., Dong, J.W., Rong, C.M.: A novel key pre-distribution scheme for wireless distributed sensor networks. Sci. China Inf. Sci. 53, 288–298 (2010)

    Article  MathSciNet  Google Scholar 

  23. Wei, R., Wu, J.: Product construction of key distribution schemes for sensor networks. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 280–293. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  24. Welsh, D.J.A.: Matroid Theory. Academic Press, London (1976)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, Q., Pei, D., Dong, J. (2011). Determining Parameters of Key Predistribution Schemes via Linear Codes in Wireless Sensor Networks. In: Lai, X., Yung, M., Lin, D. (eds) Information Security and Cryptology. Inscrypt 2010. Lecture Notes in Computer Science, vol 6584. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21518-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21518-6_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21517-9

  • Online ISBN: 978-3-642-21518-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics