Abstract
This paper presents a feature fusion approach to the recognition of human actions from multiple cameras that avoids the computation of the 3D visual hull. Action descriptors are extracted for each one of the camera views available and projected into a common subspace that maximizes the correlation between each one of the components of the projections. That common subspace is learned using Probabilistic Canonical Correlation Analysis. The action classification is made in that subspace using a discriminative classifier. Results of the proposed method are shown for the classification of the IXMAS dataset.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bach, F., Jordan, M.: Kernel independent component analysis. The Journal of Machine Learning Research 3, 1–48 (2003)
Bach, F., Jordan, M.: A probabilistic interpretation of canonical correlation analysis. Dept. Statist., Univ. California, Berkeley, CA, Tech. Rep 688 (2005)
Bobick, A., Davis, J.: The recognition of human movement using temporal templates. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(3), 257–267 (2001)
Cilla, R., Patricio, M.A., Berlanga, A., Molina, J.M.: Fusion of single view soft k-NN classifiers for multicamera human action recognition. In: Corchado, E., Graña Romay, M., Manhaes Savio, A. (eds.) HAIS 2010. LNCS, vol. 6077, pp. 436–443. Springer, Heidelberg (2010)
Dasarathy, B.: Sensor fusion potential exploitation-innovative architectures and illustrative applications. Proceedings of the IEEE 85(1), 24–38 (2002)
Hardoon, D., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: an overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004)
Klami, A., Kaski, S.: Local dependent components. In: Proceedings of the 24th International Conference on Machine learning, pp. 425–432. ACM, New York (2007)
Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: International Conference on Machine Learning (2001)
Laurentini, A.: The visual hull concept for silhouette-based image understanding. IEEE Transactions on Pattern Analysis and Machine Intelligence, 150–162 (1994)
Lavee, G., Rivlin, E., Rudzsky, M.: Understanding Video Events: A Survey of Methods for Automatic Interpretation of Semantic Occurrences in Video. IEEE Transactions on Systems, Man and Cybernetics - Part C: Applications and Reviews 39(5), 489–504 (2009)
Li, R., Tian, T., Sclaroff, S.: Simultaneous learning of nonlinear manifold and dynamical models for high-dimensional time series. In: IEEE 11th International Conference on Computer Vision, ICCV 2007, pp. 1–8. IEEE, Los Alamitos (2007)
Määttä, T., Härmä, A., Aghajan, H.: On efficient use of multi-view data for activity recognition. In: 4th IEEE/ACM International Conference on Distributed Smart Cameras, ICSDC 2010, pp. 158–165 (2010)
Peng, B., Qian, G., Rajko, S.: View-Invariant Full-Body Gesture Recognition via Multilinear Analysis of Voxel Data. In: Third ACM/IEEE Conference on Distributed Smart Cameras (September 2009)
Quattoni, A., Wang, S., Morency, L.P., Collins, M., Darrell, T.: Hidden conditional random fields. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(10), 1848–1852 (2007)
Srivastava, C., Iwaki, H., Park, J., Kak, A.C.: Distributed and Lightweight Multi-Camera Human Activity Classification. In: Third ACM/IEEE Conference on Distributed Smart Cameras, pp. 1–8 (September 2009)
Stauffer, C., Grimson, W.: Adaptive background mixture models for real-time tracking. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2. IEEE, Los Alamitos (2002)
Tipping, M., Bishop, C.: Probabilistic principal component analysis. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 61(3), 611–622 (1999)
Tran, D., Sorokin, A.: Human activity recognition with metric learning. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 548–561. Springer, Heidelberg (2008)
Turaga, P., Veeraraghavan, A., Chellappa, R.: Statistical analysis on Stiefel and Grassmann manifolds with applications in computer vision. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8. IEEE, Los Alamitos (2008)
Wang, L., Suter, D.: Visual learning and recognition of sequential data manifolds with applications to human movement analysis. Computer Vision and Image Understanding 110(2), 153–172 (2008)
Weinland, D., Ronfard, R., Boyer, E.: Free viewpoint action recognition using motion history volumes. Computer Vision and Image Understanding 104(2-3), 249–257 (2006)
Wu, C., Khalili, A., Aghajan, H.: Multiview Activity Recognition in Smart Homes with Spatio-Temporal Features. In: 4th IEEE/ACM International Conference on Distributed Smart Cameras, ICSDC 2010, pp. 142–149 (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cilla, R., Patricio, M.A., Berlanga, A., Molina, J.M. (2011). Multicamera Action Recognition with Canonical Correlation Analysis and Discriminative Sequence Classification. In: Ferrández, J.M., Álvarez Sánchez, J.R., de la Paz, F., Toledo, F.J. (eds) Foundations on Natural and Artificial Computation. IWINAC 2011. Lecture Notes in Computer Science, vol 6686. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21344-1_51
Download citation
DOI: https://doi.org/10.1007/978-3-642-21344-1_51
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21343-4
Online ISBN: 978-3-642-21344-1
eBook Packages: Computer ScienceComputer Science (R0)