[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Multicamera Action Recognition with Canonical Correlation Analysis and Discriminative Sequence Classification

  • Conference paper
Foundations on Natural and Artificial Computation (IWINAC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6686))

Abstract

This paper presents a feature fusion approach to the recognition of human actions from multiple cameras that avoids the computation of the 3D visual hull. Action descriptors are extracted for each one of the camera views available and projected into a common subspace that maximizes the correlation between each one of the components of the projections. That common subspace is learned using Probabilistic Canonical Correlation Analysis. The action classification is made in that subspace using a discriminative classifier. Results of the proposed method are shown for the classification of the IXMAS dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bach, F., Jordan, M.: Kernel independent component analysis. The Journal of Machine Learning Research 3, 1–48 (2003)

    MathSciNet  MATH  Google Scholar 

  2. Bach, F., Jordan, M.: A probabilistic interpretation of canonical correlation analysis. Dept. Statist., Univ. California, Berkeley, CA, Tech. Rep 688 (2005)

    Google Scholar 

  3. Bobick, A., Davis, J.: The recognition of human movement using temporal templates. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(3), 257–267 (2001)

    Article  Google Scholar 

  4. Cilla, R., Patricio, M.A., Berlanga, A., Molina, J.M.: Fusion of single view soft k-NN classifiers for multicamera human action recognition. In: Corchado, E., Graña Romay, M., Manhaes Savio, A. (eds.) HAIS 2010. LNCS, vol. 6077, pp. 436–443. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  5. Dasarathy, B.: Sensor fusion potential exploitation-innovative architectures and illustrative applications. Proceedings of the IEEE 85(1), 24–38 (2002)

    Article  Google Scholar 

  6. Hardoon, D., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: an overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004)

    Article  MATH  Google Scholar 

  7. Klami, A., Kaski, S.: Local dependent components. In: Proceedings of the 24th International Conference on Machine learning, pp. 425–432. ACM, New York (2007)

    Google Scholar 

  8. Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: International Conference on Machine Learning (2001)

    Google Scholar 

  9. Laurentini, A.: The visual hull concept for silhouette-based image understanding. IEEE Transactions on Pattern Analysis and Machine Intelligence, 150–162 (1994)

    Google Scholar 

  10. Lavee, G., Rivlin, E., Rudzsky, M.: Understanding Video Events: A Survey of Methods for Automatic Interpretation of Semantic Occurrences in Video. IEEE Transactions on Systems, Man and Cybernetics - Part C: Applications and Reviews 39(5), 489–504 (2009)

    Article  Google Scholar 

  11. Li, R., Tian, T., Sclaroff, S.: Simultaneous learning of nonlinear manifold and dynamical models for high-dimensional time series. In: IEEE 11th International Conference on Computer Vision, ICCV 2007, pp. 1–8. IEEE, Los Alamitos (2007)

    Google Scholar 

  12. Määttä, T., Härmä, A., Aghajan, H.: On efficient use of multi-view data for activity recognition. In: 4th IEEE/ACM International Conference on Distributed Smart Cameras, ICSDC 2010, pp. 158–165 (2010)

    Google Scholar 

  13. Peng, B., Qian, G., Rajko, S.: View-Invariant Full-Body Gesture Recognition via Multilinear Analysis of Voxel Data. In: Third ACM/IEEE Conference on Distributed Smart Cameras (September 2009)

    Google Scholar 

  14. Quattoni, A., Wang, S., Morency, L.P., Collins, M., Darrell, T.: Hidden conditional random fields. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(10), 1848–1852 (2007)

    Article  Google Scholar 

  15. Srivastava, C., Iwaki, H., Park, J., Kak, A.C.: Distributed and Lightweight Multi-Camera Human Activity Classification. In: Third ACM/IEEE Conference on Distributed Smart Cameras, pp. 1–8 (September 2009)

    Google Scholar 

  16. Stauffer, C., Grimson, W.: Adaptive background mixture models for real-time tracking. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2. IEEE, Los Alamitos (2002)

    Google Scholar 

  17. Tipping, M., Bishop, C.: Probabilistic principal component analysis. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 61(3), 611–622 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Tran, D., Sorokin, A.: Human activity recognition with metric learning. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 548–561. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  19. Turaga, P., Veeraraghavan, A., Chellappa, R.: Statistical analysis on Stiefel and Grassmann manifolds with applications in computer vision. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8. IEEE, Los Alamitos (2008)

    Google Scholar 

  20. Wang, L., Suter, D.: Visual learning and recognition of sequential data manifolds with applications to human movement analysis. Computer Vision and Image Understanding 110(2), 153–172 (2008)

    Article  Google Scholar 

  21. Weinland, D., Ronfard, R., Boyer, E.: Free viewpoint action recognition using motion history volumes. Computer Vision and Image Understanding 104(2-3), 249–257 (2006)

    Article  Google Scholar 

  22. Wu, C., Khalili, A., Aghajan, H.: Multiview Activity Recognition in Smart Homes with Spatio-Temporal Features. In: 4th IEEE/ACM International Conference on Distributed Smart Cameras, ICSDC 2010, pp. 142–149 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cilla, R., Patricio, M.A., Berlanga, A., Molina, J.M. (2011). Multicamera Action Recognition with Canonical Correlation Analysis and Discriminative Sequence Classification. In: Ferrández, J.M., Álvarez Sánchez, J.R., de la Paz, F., Toledo, F.J. (eds) Foundations on Natural and Artificial Computation. IWINAC 2011. Lecture Notes in Computer Science, vol 6686. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21344-1_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21344-1_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21343-4

  • Online ISBN: 978-3-642-21344-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics