[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

An Expandable Hardware Platform for Implementation of CNN-Based Applications

  • Conference paper
New Challenges on Bioinspired Applications (IWINAC 2011)

Abstract

This paper proposes a standalone system for real-time processing of video streams using CNNs. The computing platform is easily expandable and customizable for any application. This is achieved by using a modular approach both for the CNN architecture itself and for its hardware implementation. Several FPGA-based processing modules can be cascaded together with a video acquisition stage and an output interface to a framegrabber for video output storage, all sharing a common communication interface. The pre-verified CNN components, the modular architecture, and the expandable hardware platform provide an excellent workbench for fast and confident developing of CNN applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Harrer, H., Nossek, J., Stelzl, R.: An analog implementation of discrete-time cellular neural networks. IEEE Transactions on Neural Networks 3, 466–476 (1992)

    Article  Google Scholar 

  2. Harrer, H., Nossek, J., Roska, T., Chua, L.: A current-mode DTCNN universal chip. In: IEEE International Symposium on Circuits and Systems, vol. 4, pp. 135–138 (1993)

    Google Scholar 

  3. Paasio, A., Dawidziuk, A., Porra, V.: A QCIF Resolution Binary I/O CNN-UM Chip. J. VLSI Signal Processing Systems 23, 281–290 (1999)

    Article  Google Scholar 

  4. Malki, S., Spaanenburg, L.: CNN Image Processing on a Xilinx Virtex-II 6000. In: Proceedings ECCTD 2003, Krakow, pp. 261–264 (2003)

    Google Scholar 

  5. Rodriguez-Vazquez, A., Linan-Cembrano, G., Carranza, L., Roca-Moreno, E., Carmona-Galan, R., Jimenez-Garrido, F., Dominguez-Castro, R., EMeana, S.: ACE16k: the third generation of mixed-signal SIMD-CNN ACE chips toward VSoCs. IEEE Transactions on Circuits and Systems I 51(5), 851–863 (2004)

    Article  Google Scholar 

  6. AnaFocus Ltd. (2004), http://www.anafocus.com eye-RIS v1.0/v2.0 Datasheet

  7. Martínez, J.J., Garrigós, F.J., Toledo, F.J., Ferrández, J.M.: High performance implementation of an FPGA-based sequential DT-CNN. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2007. LNCS, vol. 4528, pp. 1–9. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Voroshazi, Z., Kiss, A., Nagy, Z., Szolgay, P.: Implementation of embedded emulated-digital CNN-UM global analogic programming unit on FPGA and its application. International Journal of Circuit Theory and Applications 36, 589–603 (2008)

    Article  Google Scholar 

  9. Nagy, Z., Szolgay, P.: Configurable multilayer CNN-UM emulator on FPGA. IEEE Trans. on Circuits and Systems I 50(6), 774–778 (2003)

    Article  Google Scholar 

  10. Laiho, M., Poikonen, J., Virta, P., Paasio, A.: A 64x64 cell mixed-mode array processor prototyping system. In: International Workshop on Cellular Neural Networks and Their Applications, CNNA 2008, pp. 14–16 (2008)

    Google Scholar 

  11. Fujita, T., Okamura, T., Nakanishi, M., Ogura, T.: CAM2-universal machine: A DTCNN implementation for real-time image processing. In: International Workshop on Cellular Neural Networks and Their Applications, CNNA 2008, pp. 219–223 (2008)

    Google Scholar 

  12. Martínez, J.J., Toledo, F.J., Fernández, E., Ferrández, J.M.: A retinomorphic architecture based on discrete-time cellular neural networks using reconfigurable computing. Neurocomputing 71(4-6), 766–775 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Martínez-Álvarez, J.J., Garrigós-Guerrero, F.J., Toledo-Moreo, F.J., Ferrández-Vicente, J.M. (2011). An Expandable Hardware Platform for Implementation of CNN-Based Applications. In: Ferrández, J.M., Álvarez Sánchez, J.R., de la Paz, F., Toledo, F.J. (eds) New Challenges on Bioinspired Applications. IWINAC 2011. Lecture Notes in Computer Science, vol 6687. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21326-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21326-7_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21325-0

  • Online ISBN: 978-3-642-21326-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics