[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Gene Regulatory Networks Validation Framework Based in KEGG

  • Conference paper
Hybrid Artificial Intelligent Systems (HAIS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6679))

Included in the following conference series:

Abstract

In the last few years, DNA microarray technology has attained a very important role in biological and biomedical research. It enables analyzing the relations among thousands of genes simultaneously, generating huge amounts of data. The gene regulatory networks represent, in a graph data structure, genes or gene products and the functional relationships between them. These models have been fully used in Bioinformatics because they provide an easy way to understand gene expression regulation.

Nowadays, a lot of gene regulatory network algorithms have been developed as knowledge extraction techniques. A very important task in all these studies is to assure the network models reliability in order to prove that the methods used are precise. This validation process can be carried out by using the inherent information of the input data or by using external biological knowledge. In this last case, these sources of information provide a great opportunity of verifying the biological soundness of the generated networks.

In this work, authors present a gene regulatory network validation framework. The proposed approach consists in identifying the biological knowledge included in the input network. To do that, the biochemical pathways information stored in KEGG database will be used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bairoch, A.: The enzyme database in 2000. Nucl. Acids Res. 28(1), 304–305 (2000)

    Article  Google Scholar 

  2. Bickel, D.R., Montazeri, Z., Hsieh, P.-C., Beatty, M., Lawit, S.J., Bat, N.J.: Gene network reconstruction from transcriptional dynamics under kinetic model uncertainty: a case for the second derivative. Bioinformatics 25(6), 772–779 (2009)

    Article  Google Scholar 

  3. Bornholdt, S.: Boolean network models of cellular regulation: prospects and limitations. Journal of the Royal Society Interface 5, S85–S94 (2008)

    Article  Google Scholar 

  4. Butte, A.J., Kohane, I.S.: Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. In: Pacific Symposium on Biocomputing, pp. 418–429 (2000)

    Google Scholar 

  5. Faith, J.J., Hayete, B., Thaden, J.T., Mogno, I., Wierzbowski, J., Cottarel, G., Kasif, S., Collins, J.J., Gardner, T.S.: Large-scale mapping and validation of escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol.  5(1), 8 (2007)

    Article  Google Scholar 

  6. Hecker, M., Lambeck, S., Toepfer, S., Someren, E.v., Guthke, R.: Gene regulatory network inference: Data integration in dynamic models a review. Biosystems 96(1), 86–103 (2009)

    Article  Google Scholar 

  7. Heckerman, D.: A tutorial on learning with bayesian networks. Technical report, Microsoft Research, MSR–TR- 95–06 (1995)

    Google Scholar 

  8. Joshi-Tope, G., Gillespie, M., Vastrik, I., D’Eustachio, P., Schmidt, E., de Bono, B., Jassal, B., Gopinath, G.R., Wu, G.R., Matthews, L., Lewis, S., Birney, E., Stein, L.: Reactome: a knowledgebase of biological pathways. Nucleic acids research 33(Database issue), D428–D432 (2005)

    Article  Google Scholar 

  9. Kanehisa, M., Goto, S.: Kegg: Kyoto encyclopedia of genes and genomes. Nucl. Acids Res. 28(1), 27–30 (2000)

    Article  Google Scholar 

  10. Kanehisa, M., Goto, S., Furumichi, M., Tanabe, M., Hirakawa, M.: Kegg for representation and analysis of molecular networks involving diseases and drugs. Nucleic acids research 38(Database issue), D355–D360 (2010)

    Article  Google Scholar 

  11. Kauman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic nets. Journal of Theoretical Biology 22, 437–467 (1969)

    Article  MathSciNet  Google Scholar 

  12. Kauman, S.A., Glass, K.: The logical analysis of continuous, nonlinear biochemical control networks. Journal of Theoretical Biology 39, 103–129 (1973)

    Article  Google Scholar 

  13. Lippert, C., Ghahramani, Z., Borgwardt, K.M.: Gene function prediction from synthetic lethality networks via ranking on demand. Bioinformatics 26(7), 912–918 (2010)

    Article  Google Scholar 

  14. Margolin, A.A., Nemenman, I., Basso, K., Wiggins, C., Stolovitzky, G., Favera, R.D., Califano, A.: Aracne: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC bioinformatics 7 (Suppl. 1) (2006)

    Google Scholar 

  15. Needham, C.J., Bradford, J.R., Bulpitt, A.J., Westhead, D.R.: A primer on learning in bayesian networks for computational biology. PLoS Comput. Biol. 3(8), 129 (2007)

    Article  Google Scholar 

  16. Nepomuceno-Chamorro, I.A., Aguilar-Ruiz, J.S., Riquelme, J.S.: Inferring gene regression networks with model trees. BMC Bioinformatics 11, 517–528 (2010)

    Article  Google Scholar 

  17. Okuda, S., Yamada, T., Hamajima, M., Itoh, M., Katayama, T., Bork, P., Goto, S., Kanehisa, M.: Kegg atlas mapping for global analysis of metabolic pathways. Nucleic acids research 36(Web Server issue), gkn282+ (2008)

    Google Scholar 

  18. Rangel, C., Angus, J., Ghahramani, Z., Lioumi, M., Sotheran, E., Gaiba, A., Wild, D.L., Falciani, F.: Modeling t-cell activation using gene expression profiling and state-space models. Bioinformatics 20(9), 1361–1372 (2004)

    Article  Google Scholar 

  19. Shmulevich, I., Dougherty, R., Kim, S., Zhang, W.: Probabilistic boolean networks: A rule-based uncertainty model for gene regulatory networks. Bioinformatics 18(2), 261–274 (2002)

    Article  Google Scholar 

  20. Soinov, L.A., Krestyaninova, M.A., Brazma, A.: Towards reconstruction of gene networks from expression data by supervised learning. Genome Biology 4, 6 (2003)

    Article  Google Scholar 

  21. Uetz, P., Giot, L., Cagney, G., Mansfield, T.A., Judson, R.S., Knight, J.R., Lockshon, T., Narayan, V., Srinivasan, M., Pochart, P., Qureshi-Emili, A., Li, Y., Godwin, P., Conover, D., Kalbfleisch, P., Vijayadamodar, G., Yang, M., Johnston, M., Fields, S., Rothberg, J.M.: A comprehensive analysis of protein protein interactions in saccharomyces cerevisiae. Nature 403(6770), 623–627 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Díaz-Díaz, N., Gómez-Vela, F., Rodriguez-Baena, D.S., Aguilar-Ruiz, J. (2011). Gene Regulatory Networks Validation Framework Based in KEGG. In: Corchado, E., Kurzyński, M., Woźniak, M. (eds) Hybrid Artificial Intelligent Systems. HAIS 2011. Lecture Notes in Computer Science(), vol 6679. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21222-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21222-2_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21221-5

  • Online ISBN: 978-3-642-21222-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics