[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Probabilistic Approach to the Dynamic Ensemble Selection Using Measures of Competence and Diversity of Base Classifiers

  • Conference paper
Hybrid Artificial Intelligent Systems (HAIS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6679))

Included in the following conference series:

Abstract

In the paper measures of classifier competence and diversity using a probabilistic model are proposed. The multiple classifier system (MCS) based on dynamic ensemble selection scheme was constructed using both measures developed. The performance of proposed MCS was compared against three multiple classifier systems using six databases taken from the UCI Machine Learning Repository and the StatLib statistical dataset. The experimental results clearly show the effectiveness of the proposed dynamic selection methods regardless of the ensemble type used (homogeneous or heterogeneous).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aksela, M.: Comparison of classifier selection methods for improving committee performance. In: Windeatt, T., Roli, F. (eds.) MCS 2003. LNCS, vol. 2709, pp. 84–93. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  2. Aksela, M., Laaksonen, J.: Using diversity of errors for selecting members of a committee classifier. Pattern Recognition 39, 608–623 (2006)

    Article  MATH  Google Scholar 

  3. Berger, J.O.: Statistical Decision Theory and Bayesian Analysis. Springer, New York (1987)

    Google Scholar 

  4. Brown, G., Wyatt, J., Harris, R., Yao, X.: Diversity creation methods: a survey and categorisation. Information Fusion 6, 5–20 (2005)

    Article  Google Scholar 

  5. Canuto, A., Abreu, M., et al.: Investigating the influence of the choice of the ensemble members in accuracy and diversity of selection-based and fusion-based methods for ensemble. Pattern Recognition Letters 28, 472–486 (2007)

    Article  Google Scholar 

  6. Didaci, L., Giacinto, G., Roli, F., Marcialis, G.: A study on the performances of dynamic classifier selection based on local accuracy estimation. Pattern Recognition 38, 2188–2191 (2005)

    Article  MATH  Google Scholar 

  7. Dietterich, T.G.: Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation 10, 1895–1923 (1998)

    Article  Google Scholar 

  8. Duda, R., Hart, P., Stork, G.: Pattern Classification. John Wiley and Sons, New York (2000)

    MATH  Google Scholar 

  9. Duin, R., Juszczak, P., Paclik, P., et al.: PRTools4. In: A Matlab Toolbox for Pattern Recognition, Delft University of Technology (2007)

    Google Scholar 

  10. Eulanda, M., Santos, D., Sabourin, R., Maupin, P.: A dynamic overproduce-and-choose strategy for the selection of classifier ensembles. Pattern Recognition 41, 2993–3009 (2008)

    Article  MATH  Google Scholar 

  11. Giacinto, G., Roli, F.: Dynamic classifier selection based on multiple classifier behaviour. Pattern Recognition 34, 1879–1881 (2001)

    Article  MATH  Google Scholar 

  12. Huenupan, F., Yoma, N., et al.: Confidence based multiple classifier fusion in speaker verification. Pattern Recognition Letters 29, 957–966 (2008)

    Article  Google Scholar 

  13. Kanal, L.: Patterns in pattern recognition. IEEE Trans. Information Theory 20, 697–722 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ko, A., Sabourin, R., Britto, A.: From dynamic classifier selection to dynamic ensemble selection. Pattern Recognition 41, 1718–1733 (2008)

    Article  MATH  Google Scholar 

  15. Kuncheva, I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley Interscience, Hoboken (2004)

    Book  MATH  Google Scholar 

  16. Smits, P.: Multiple classifier systems for supervised remote sensing image classification based on dynamic classifier selection. IEEE Trans. on Geoscience and Remote Sensing 40, 717–725 (2002)

    Article  Google Scholar 

  17. Woloszynski, M., Kurzynski, M.: A measure of competence based on randomized reference classifier for dynamic ensemble selection. In: 20th Int. Conf. on Pattern Recognition, pp. 4194–4197. IEEE Computer Press, Istanbul (2010)

    Google Scholar 

  18. Woloszynski, T.: Matlab Central File Enchange (2010), http://www.mathwork.com/matlabcentral/fileenchange/28391-classifier-competence-based-on-probabilistic-modeling

  19. Woods, K., Kegelmeyer, W., Bowyer, W.: Combination of multiple classifiers using local accuracy estimates. IEEE Trans. on Pattern Analysis and Machine Learning 19, 405–410 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lysiak, R., Kurzynski, M., Woloszynski, T. (2011). Probabilistic Approach to the Dynamic Ensemble Selection Using Measures of Competence and Diversity of Base Classifiers. In: Corchado, E., Kurzyński, M., Woźniak, M. (eds) Hybrid Artificial Intelligent Systems. HAIS 2011. Lecture Notes in Computer Science(), vol 6679. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21222-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21222-2_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21221-5

  • Online ISBN: 978-3-642-21222-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics