[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6681))

Abstract

In this paper, we generalize the greedy routing concept to use semi-metric spaces. We prove that any connected n-vertex graph G admits a greedy embedding onto an appropriate semi-metric space such that (1) each vertex v of the graph is represented by up to k virtual coordinates (where the numbers are from 1 to 2n − 1 and k ≤ deg(v)); and (2) using an appropriate distance definition, there is always a distance decreasing path between any two vertices in G. In particular, we prove that, for a 3-connected plane graph G, there is a greedy embedding of G such that: (1) the greedy embedding can be obtained in linear time; and (2) each vertex can be represented by at most 3 virtual coordinates from 1 to 2n − 1. To our best knowledge, this is the first greedy routing algorithm for 3-connected plane graphs, albeit with non-standard notions of greedy embedding and greedy routing, such that: (1) it runs in linear time to compute the virtual coordinates for the vertices; and (2) the virtual coordinates are represented succinctly in O(log n) bits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Angelini, P., Di Battista, G., Frati, F.: Succinct greedy drawings do not always exist. In: Eppstein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 171–182. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  2. Angelini, P., Frati, F., Grilli, L.: An algorithm to construct greedy drawings of triangulations. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 26–37. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Barnette, D.: 3-trees in polyhedral graphs. Isreal Journal of Mathematics 18, 731–736 (1966)

    MathSciNet  MATH  Google Scholar 

  4. Bondy, J.A., Murty, U.S.R.: Graph theory with applications. Elsevier Science Publishing Co., Inc., Amsterdam

    Google Scholar 

  5. Comer, D.: Internetworking with TCP/IP, Volume 1: Principles, Protocols, and Architecture. Prentice-Hall, Inc., Upper Saddle River (2006)

    MATH  Google Scholar 

  6. Ben-Chen, M., Gotsman, C., Wormser, C.: Distributed computation of virtual coordinates. In: Proc. SoCG 2007, pp. 210–219 (2007)

    Google Scholar 

  7. Czumaj, A., Strothmann, W.-B.: Bounded degree spanning trees (Extended abstract). In: Burkard, R.E., Woeginger, G.J. (eds.) ESA 1997. LNCS, vol. 1284, pp. 104–117. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  8. Dhandapani, R.: Greedy drawings of triangulations. In: Proc. SODA 2008, pp. 102–111 (2008)

    Google Scholar 

  9. Eppstein, D., Goodrich, M.T.: Succinct greedy graph drawing in the hyperbolic plane. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 14–25. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. Goodrich, M.T., Strash, D.: Succinct Greedy Geometric Routing in the Euclidean Plane, submitted ot arXiv: 0812.3893v3 (October 2009)

    Google Scholar 

  11. Leighton, T., Moitra, A.: Some results on greedy embeddings in metric spaces. In: Proc. FOCS 2008, pp. 337–346 (2008)

    Google Scholar 

  12. Lillis, K.M., Pemmaraju, S.V.: On the efficiency of a local iterative algorithm to compute delaunay realizations. In: McGeoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 69–86. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Muhammad, R.B.: A distributed geometric routing algorithm for ad hoc wireless networks. In: Proceedings of the 4th International Conference on Information Technology (ITNG 2007), pp. 961–963. IEEE Press, Los Alamitos (2007)

    Google Scholar 

  14. Kleinberg, R.: Geographic routing using hyperbolic space. In: INFOCOM 2007: 26th IEEE International Conference on Computer Communications, pp. 1902–1909 (2007)

    Google Scholar 

  15. Rao, A., Papadimitriou, C.H., Shenker, S., Stoica, I.: Geographic routing without location information. In: Proc. Mobicom 2003, pp. 96–108 (2003)

    Google Scholar 

  16. Papadimitriou, C.H., Ratajczak, D.: On a conjecture related to geometric routing. Theoretical Computer Science 344(1), 3–14 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Strothmann, W.B.: Bounded degree spanning trees, Ph.D. thesis, Heinz-Nixdorf-Institut, Universität, Paderborn (1997)

    Google Scholar 

  18. Tanenbaum, A.S.: Computer networks, 4th edn. Prentice-Hall, Inc., Upper Saddle River (2003)

    MATH  Google Scholar 

  19. He, X., Zhang, H.: Schnyder greedy routing algorithm. In: Kratochvíl, J., Li, A., Fiala, J., Kolman, P. (eds.) TAMC 2010. LNCS, vol. 6108, pp. 271–283. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  20. He, X., Zhang, H.: On Succinct Convex Greedy Drawing of 3-Connected Plane Graphs. In: The Proceedings of SODA, the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1477–1486 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, H., Govindaiah, S. (2011). Greedy Routing via Embedding Graphs onto Semi-metric Spaces. In: Atallah, M., Li, XY., Zhu, B. (eds) Frontiers in Algorithmics and Algorithmic Aspects in Information and Management. Lecture Notes in Computer Science, vol 6681. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21204-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21204-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21203-1

  • Online ISBN: 978-3-642-21204-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics