Abstract
Parameter estimation in environmentalmodelling is essential for input parameters, which are difficult or impossible to measure. Especially in simulations for disaster propagation prediction, where hard real-time constraints have to be met to avoid tragedy, the additionally introduced computational burden of advanced global optimisation algorithms still hampers their use in many cases and poses an ongoing challenge. In this chapter we demonstrate how modifications of a Genetic Algorithm (GA) are able to decrease time-consuming fitness evaluations and hence to speed up parameter calibration. Knowledge from past observed catastrophe behaviour is used to guide the GA during various phases towards promising solution areas resulting in a fast convergence. Together with parallel computing techniques it becomes a viable estimation approach in environmental emergency modelling. Encouraging results were obtained in predicting forest fire spread.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abdalhaq, B., Cortés, A., Margalef, T., Luque, E.: Accelerating optimization of input parameters in wildland fire simulation. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds.) PPAM 2004. LNCS, vol. 3019, pp. 1067–1074. Springer, Heidelberg (2004)
Annan, J.D., Hargreaves, J.C.: Efficient estimation and ensemble generation in climate modelling. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 365(1857), 2077–2088 (2007)
Berlik, S.: A directed mutation framework for evolutionary algorithms. In: Proceedings of the International Conference on Soft Computing, MENDEL (2004)
Berry, A., Vamplew, P.: PoD can mutate: A simple dynamic directed mutation approach for genetic algorithms. In: Proceedings AISAT 2004 The 2nd International Conference on Artificial Intelligence in Science and Technology, pp. 200–205 (2004)
Bevins, C.D.: firelib user manual and technical reference (October 1996), http://www.fire.org/downloads/fireLib/1.0.4/doc.html (Cited October 28, 2010)
Bonissone, P.P., Subbu, R., Eklund, N., Kiehl, T.R.: Evolutionary algorithms + domain knowledge = real-world evolutionary computation. IEEE Transactions on Evolutionary Computation 10(3), 256–280 (2006)
Bulatewicz, T., Andresen, D., Welcha, S., Jina, W., Dasb, S., Miller, M.: A software system for scalable parameter estimation on clusters. In: Proceedings of the 8th LCI International Conference on High-Performance Clustered Computing (2007)
Crowe, A.M., McClean, C.J., Cresser, M.S.: An application of genetic algorithms to the robust estimation of soil organic and mineral fraction densities. Environmental Modelling & Software, Evolutionary Optimisation in Environmental Emergency Modelling 21(10), 1503–1507 (2006)
Denham, M., Cortés, A., Margalef, T., Luque, E.: Applying a dynamic data driven genetic algorithm to improve forest fire spread prediction. In: Computational Science- ICCS 2008. LNCS, pp. 36–45. Springer, Heidelberg (2008)
Mónica, M.D.: Predicción de la evolución de los incendios forestales guiada dinámicamente por los datos. PhD thesis, Universitat Autónoma de Barcelona, Spain (July 2009)
Divina, F., Marchiori, E.: Knowledge-based evolutionary search for inductive concept learning. In: Jin, Y. (ed.) Knowledge Incorporation in Evolutionary Computation, pp. 237–254. Springer, Heidelberg (2004)
Doherty, J.: PEST: Model-Independent Parameter Estimation. Watermark Numerical Computing, Brisbane, Australia (2009)
Finney, M.A.: Farsite: Fire area simulator - model development and evaluation. In: Forest Service Research Paper RMRS-RP-4, Department of Agriculture, Ogden, UT (2004)
Giacobbo, F., Marseguerra, M., Zio, E.: Solving the inverse problem of parameter estimation by genetic algorithms: the case of a groundwater contaminant transport model. Annals of Nuclear Energy 29(8), 967–981 (2002)
Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Kluwer Academic Publishers, Dordrecht (1989)
Gropp, W., Huss-Lederman, S., Lumsdaine, A., Lusk, E., Nitzberg, B., Saphir, W., Snir, M.: MPI: The Complete Reference, vol. 2. MIT Press, Cambridge (1998)
He, K., Dong, S., Zheng, L.: Service-oriented grid computation for large-scale parameter estimation in complex environmental modeling. In: Proceedings of the 2006 ACM symposium on applied computing SAC 2006, pp. 741–745. ACM, New York (2006)
Jager, H.I., King, A.W.: Spatial uncertainty and ecological models. Ecosystems 7(8), 841–847 (2004)
Jin, Y. (ed.): Knowledge Incorporation in Evolutionary Computation. Studies in Fuzziness and Soft Computing, vol. 167. Springer, Heidelberg (2004)
Jin, Y.: A comprehensive survey of fitness approximation in evolutionary computation. Soft Computing - A Fusion of Foundations, Methodologies and Applications 9, 3–12 (2005)
Jones, A.R., Thomson, D.J., Hort, M., Devenish, B.: The U.K. Met Office’s next-generation atmospheric dispersion model, NAME III. In: Air Pollution Modeling and its Application XVII (Proc. of the 27th NATO/CCMS Int. Technical Meeting on Air Pollution Modelling and its Application), pp. 580–589. Springer, Heidelberg (2007)
Kalman, R.E.: A new approach to linear filtering and prediction problems. Transactions of the ASME - Journal of Basic Engineering 82(Series D), 35–45 (1960)
Kanoh, H., Sakamoto, Y.: Knowledge-based genetic algorithm for university course timetabling problems. International Journal of Knowledge-based and Intelligent Engineering Systems 12(4), 283–294 (2007)
Kavetski, D., Franks, S.W., Kuczera, G.: Confronting input uncertainty in environmental modelling. In: Calibration of Watershed Models. Water Science and Applications Series, American Geophysical Union (2003)
Lee, Y.H., Park, S.K., Chang, D.-E.: Parameter estimation using the genetic algorithm and its impact on quantitative precipitation forecast. Annales Geophysicae 24(12), 3185–3189 (2006)
Li, F., Lindquist, T.M.: Knowledge guided genetic algorithm for optimal contracting strategy in a typical standing reserve market. In: Power Engineering Society General Meeting, vol. 2, pp. 859–863 (2003)
Li, Y., Yao, D., Zheng, J., Yao, J.: A modified genetic algorithm for the beam angle optimization problem in intensity-modulated radiotherapy planning. In: Talbi, E.-G., Liardet, P., Collet, P., Lutton, E., Schoenauer, M. (eds.) EA 2005. LNCS, vol. 3871, pp. 97–106. Springer, Heidelberg (2006)
Liu, Y., Khu, S.-T.: Automatic calibration of numerical models using fast optimization by fitness approximation. In: International Joint Conference on Neural Networks IJCNN 2007, pp. 1073–1078 (2007)
Montero, G., Rodriguez, E., Montenegro, R., Escobar, J.M., Gonzalez-Yuste, J.M.: Genetic algorithms for an improved parameter estimation with local refinement of tetrahedral meshes in a wind model. Advances in Engineering Software 36(1), 3–10 (2005)
Morais, M.E.: Comparing spatially explicit models of fire spread through chaparral fuels: A new model based upon the rothermel fire spread equation. M.a. thesis, University of California, Santa Barbara, USA (June 2001)
Neumann, C.J.: An alternate to the HURRAN tropical cyclone forecast system. Tech. Memo. NWS SR-62, National Oceanic and Atmospheric Administration (1972)
Pelletier, G.J., Chapra, S.C., Tao, H.: Qual2kw - a framework for modeling water quality in streams and rivers using a genetic algorithm for calibration. Environmental Modelling & Software 21(3), 419–425 (2006)
Poeter, E.P., Hill, M.C., Banta, E.R., Mehl, S., Christensen, S.: Ucode 2005 and six other computer codes for universal sensitivity analysis, calibration, and uncertainty evaluation. In: Techniques and Methods 6-A11, U.S. Geological Survey, Reston, Virginia (2005)
Poyton, A.A., Varziri, M.S., McAuley, K.B., McLellan, P.J., Ramsay, J.O.: Parameter estimation in continuous-time dynamic models using principal differential analysis. Computers& Chemical Engineering 30(4), 698–708 (2006)
Rodríguez, R., Cortés, A., Margalef, T.: Injecting dynamic real-time data into a DDDAS for forest fire behavior prediction. In: Allen, G., Nabrzyski, J., Seidel, E., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2009. LNCS, vol. 5545, pp. 489–499. Springer, Heidelberg (2009)
Rothermel, R.C.: A mathematical model for predicting fire spread in wildland fuels. Forest Service Research Paper INT-115, U.S. Dept. of Agriculture, Ogden (1972)
ScienceDaily and MIT. Preventing forest fires with tree power: Sensor system runs on electricity generated by trees (September 2008), http://www.sciencedaily.com/releases/2008/09/080922095435.htm (Cited October 28, 2010)
Tymstra, C., Bryce, R.W., Wotton, B.M., Taylor, S.W., Armitage, O.B.: Development and structure of prometheus: the canadian wildland fire growth simulation model. Information Report NOR-X-417, Natural Resources Canada, Canadian Forest Service, Edmonton, Alberta (2010)
Viegas, D.X.: Spread project (October 2003), http://www.algosystems.gr/spread (Cited October 28, 2010)
Vrugt, J.A., Nuallin, B., Robinson, B.A., Bouten, W., Dekker, S.C., Sloot, P.M.A.: Application of parallel computing to stochastic parameter estimation in environmental models. Computers & Geosciences 32(8), 1139–1155 (2006)
Wang, Q.J.: Using genetic algorithms to optimise model parameters. Environmental Modelling & Software 12(1), 27–34 (1997)
Wendt, K., Cortés, A., Margalef, T.: Knowledge-guided genetic algorithm for input parameter optimisation in environmental modelling. In: Procedia Computer Science ICCS 2010, vol. 1(1), pp. 1367–1375 (2010)
Randall Wilson, D., Martinez, T.R.: Improved heterogeneous distance functions. Journal of Artificial Intelligence Research 6, 1–34 (1997)
Zhu, L., Chen, J.M., Qin, Q., Li, J., Wang, L.: Optimization of ecosystem model parameters using spatio-temporal soil moisture information. Ecological Modelling 220(18), 2121–2136 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Wendt, K., Denham, M., Cortés, A., Margalef, T. (2011). Evolutionary Optimisation Techniques to Estimate Input Parameters in Environmental Emergency Modelling. In: Yang, XS., Koziel, S. (eds) Computational Optimization and Applications in Engineering and Industry. Studies in Computational Intelligence, vol 359. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20986-4_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-20986-4_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-20985-7
Online ISBN: 978-3-642-20986-4
eBook Packages: EngineeringEngineering (R0)