Abstract
In this paper we give the minimal connectivity required in a synchronous directed network, which is under the influence of a computationally unbounded Byzantine adversary that can corrupt a subset of nodes, so that Secure Message Transmission is possible between sender S and receiver R. We also show that secure communication between a pair of nodes in a given synchronous directed network is possible in both directions if and only if reliable communication is possible between them. We assume that in a network, every node is capable of computation and we model the network along the lines of [14].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness Theorems for Non-cryptographic Fault-tolerant Distributed Computation. In: Proceedings of the 20th Symposium on Theory of Computing (STOC), pp. 1–10. ACM Press, New York (1988)
Chaum, D., Crepeau, C., Damgard, I.: Multi-party Unconditionally Secure Protocols. In: Proceedings of 20th Symposium on Theory of Computing (STOC), pp. 11–19. ACM Press, New York (1988)
Desmedt, Y.G., Wang, Y.: Perfectly secure message transmission revisited. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 502–517. Springer, Heidelberg (2002)
Franklin, M.K., Wright, R.N.: Secure communication in minimal connectivity models. J. Cryptology 13(1), 9–30 (2000)
Goldreich, O., Micali, S., Wigderson, A.: How to Play any Mental Game. In: Proceedings of the 19th Symposium on Theory of Computing (STOC), pp. 218–229. ACM Press, New York (1987)
Hirt, M., Maurer, U.: Complete Characterization of Adversaries Tolerable in Secure Multi-party Computation. In: Proceedings of the 16th Symposium on Principles of Distributed Computing (PODC), pp. 25–34. ACM Press, New York (1997)
Kumar, M.V.N.A., Goundan, P.R., Srinathan, K., Pandu Rangan, C.: On perfectly secure communication over arbitrary networks. In: Proceedings of the 21st Symposium on Principles of Distributed Computing (PODC), pp. 193–202. ACM Press, Monterey (2002)
Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Trans. Program. Lang. Syst. 4(3), 382–401 (1982)
Patra, A., Shankar, B., Choudhary, A., Srinathan, K., Rangan, C.P.: Perfectly secure message transmission in directed networks tolerating threshold and non threshold adversary. In: Bao, F., Ling, S., Okamoto, T., Wang, H., Xing, C. (eds.) CANS 2007. LNCS, vol. 4856, pp. 80–101. Springer, Heidelberg (2007)
Rabin, T., Ben-Or, M.: Verifiable Secret Sharing and Multiparty Protocols with Honest Majority. In: Proceedings of the 21st Symposium on Theory of Computing (STOC), pp. 73–85. ACM Press, New York (1989)
Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest majority. In: STOC 1989: Proceedings of the Twenty-First Annual ACM Symposium on Theory of Computing, pp. 73–85. ACM, New York (1989)
Shankar, B., Gopal, P., Srinathan, K., Pandu Rangan, C.: Unconditionally reliable message transmission in directed networks. In: SODA 2008: Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1048–1055. Society for Industrial and Applied Mathematics, Philadelphia (2008)
Srinathan, K., Patra, A., Choudhary, A., Pandu Rangan, C.: Unconditionally secure message transmission in arbitrary directed synchronous networks tolerating generalized mixed adversary. In: ASIACCS 2009: Proceedings of the 4th International Symposium on Information, Computer, and Communications Security, pp. 171–182. ACM, New York (2009)
Srinathan, K., Pandu Rangan, C.: Possibility and complexity of probabilistic reliable communications in directed networks. In: Proceedings of 25th ACM Symposium on Principles of Distributed Computing, PODC 2006 (2006)
Yang, Q., Desmedt, Y.: Cryptanalysis of secure message transmission protocols with feedback. In: Kurosawa, K. (ed.) Information Theoretic Security. LNCS, vol. 5973, pp. 159–176. Springer, Heidelberg (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Nayak, M., Agrawal, S., Srinathan, K. (2011). Minimal Connectivity for Unconditionally Secure Message Transmission in Synchronous Directed Networks. In: Fehr, S. (eds) Information Theoretic Security. ICITS 2011. Lecture Notes in Computer Science, vol 6673. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20728-0_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-20728-0_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-20727-3
Online ISBN: 978-3-642-20728-0
eBook Packages: Computer ScienceComputer Science (R0)