[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

The Blow-Up in Translating LTL to Deterministic Automata

  • Conference paper
Model Checking and Artificial Intelligence (MoChArt 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6572))

Included in the following conference series:

Abstract

The translation of LTL formulas to nondeterministic automata involves an exponential blow-up, and so does the translation of nondeterministic automata to deterministic ones. This yields a \(2^{2^{O(n)}}\) upper bound for the translation of LTL to deterministic automata. A lower bound for the translation was studied in [KV05a], which describes a \(2^{2^{\Omega(\sqrt{n})}}\) lower bound, leaving the problem of the exact blow-up open. In this paper we solve this problem and tighten the lower bound to \(2^{2^{\Omega(n)}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Boker, U., Kupferman, O.: Co-ing Büchi made tight and helpful. In: Proc. 24th IEEE Symp. on Logic in Computer Science, pp. 245–254 (2009)

    Google Scholar 

  2. Boker, U., Kupferman, O., Rosenberg, A.: Alternation Removal in Büchi Automata. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 76–87. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  3. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Proc. Int. Congress on Logic, Method, and Philosophy of Science. 1960, pp. 1–12. Stanford University Press, Standford (1962)

    Google Scholar 

  4. Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. Journal of the Association for Computing Machinery 28(1), 114–133 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dam, M.: CTL ⋆  and ECTL ⋆  as fragments of the modal μ-calculus. Theoretical Computer Science 126, 77–96 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Etessami, K., Holzmann, G.J.: Optimizing büchi automata. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 153–167. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  7. Emerson, E.A., Sistla, A.P.: Deciding branching time logic. In: Proc. 16th ACM Symp. on Theory of Computing, pp. 14–24 (1984)

    Google Scholar 

  8. Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  9. Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic verification of linear temporal logic. In: Dembiski, P., Sredniawa, M. (eds.) Protocol Specification, Testing, and Verification, pp. 3–18. Chapman and Hall, Boca Raton (1995)

    Google Scholar 

  10. Krishnan, S.C., Puri, A., Brayton, R.K.: Deterministic ω-automata vis-a-vis deterministic Büchi automata. In: Du, D.-Z., Zhang, X.-S. (eds.) ISAAC 1994. LNCS, vol. 834, pp. 378–386. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  11. Kupferman, O.: Avoiding determinization. In: Proc. 21st IEEE Symp. on Logic in Computer Science, pp. 243–254 (2006)

    Google Scholar 

  12. Kupferman, O., Vardi, M.Y.: From linear time to branching time. ACM Transactions on Computational Logic 6(2), 273–294 (2005)

    Article  MathSciNet  Google Scholar 

  13. Kupferman, O., Vardi, M.Y.: Safraless decision procedures. In: Proc. 46th IEEE Symp. on Foundations of Computer Science, pp. 531–540 (2005)

    Google Scholar 

  14. Landweber, L.H.: Decision problems for ω–automata. Mathematical Systems Theory 3, 376–384 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  15. Miyano, S., Hayashi, T.: Alternating nite automata on!-words. Theoretical Computer Science 32, 321–330 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  16. Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic parity automata. In: Proc. 21st IEEE Symp. on Logic in Computer Science, pp. 255–264. IEEE Press, Los Alamitos (2006)

    Google Scholar 

  17. Pnueli, A.: The temporal semantics of concurrent programs. Theoretical Computer Science 13, 45–60 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  18. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proc. 16th ACM Symp. on Principles of Programming Languages, pp. 179–190 (1989)

    Google Scholar 

  19. Rabin, M.O.: Decidability of second order theories and automata on infinite trees. Transaction of the AMS 141, 1–35 (1969)

    MathSciNet  MATH  Google Scholar 

  20. Safra, S.: On the complexity of ω-automata. In: Proc. 29th IEEE Symp. on Foundations of Computer Science, pp. 319–327 (1988)

    Google Scholar 

  21. Somenzi, F., Bloem, R.: Efficient Büchi automata from LTL formulae. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 248–263. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  22. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Information and Computation 115(1), 1–37 (1994)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kupferman, O., Rosenberg, A. (2011). The Blow-Up in Translating LTL to Deterministic Automata. In: van der Meyden, R., Smaus, JG. (eds) Model Checking and Artificial Intelligence. MoChArt 2010. Lecture Notes in Computer Science(), vol 6572. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20674-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20674-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20673-3

  • Online ISBN: 978-3-642-20674-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics