[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Regularized NNLS Algorithms for Nonnegative Matrix Factorization with Application to Text Document Clustering

  • Conference paper
Computer Recognition Systems 4

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 95))

  • 1390 Accesses

Abstract

Nonnegative Matrix Factorization (NMF) has recently received much attention both in an algorithmic aspect as well as in applications. Text document clustering and supervised classification are important applications of NMF. Various types of numerical optimization algorithms have been proposed for NMF, which includes multiplicative, projected gradient descent, alternating least squares and active-set ones. In this paper, we discuss the selected Non-Negatively constrained Least Squares (NNLS) algorithms (a family of the NNLS algorithm proposed by Lawson and Hanson) that belong to a class of active-set methods. We noticed that applying the NNLS algorithm to the Tikhonov regularized LS objective function with a regularization parameter exponentially decreasing considerably increases the accuracy of data clustering as well as it reduces the risk of getting stuck into unfavorable local minima. Moreover, the experiments demonstrate that the regularized NNLS algorithm is superior to many well-known NMF algorithms used for text document clustering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 199.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 249.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Benthem, M.H.V., Keenan, M.R.: J. Chemometr. 18, 441–450 (2004)

    Article  Google Scholar 

  2. Berry, M., Browne, M., Langville, A., Pauca, P., Plemmons, R.: Comput. Stat. Data An. 52, 155–173 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bro, R., Jong, S.D.: J. Chemometr. 11, 393–401 (1997)

    Article  Google Scholar 

  4. Buciu, I., Pitas, I.: Application of non-negative and local nonnegative matrix factorization to facial expression recognition. In: Proc. Intl. Conf. Pattern Recognition (ICPR), pp. 288–291 (2004)

    Google Scholar 

  5. Cai, D., He, X., Wu, X., Bao, H., Han, J.: Locality preserving nonnegative matrix factorization. In: Proc. IJCAI 2009, pp. 1010–1015 (2009)

    Google Scholar 

  6. Cai, D., He, X., Wu, X., Han, J.: Nonnegative matrix factorization on manifold. In: Proc. 8th IEEE Intl. Conf. Data Mining (ICDM), pp. 63–72 (2008)

    Google Scholar 

  7. Cichocki, A., Zdunek, R., Phan, A.H., Amari, S.I.: Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-way Data Analysis and Blind Source Separation. Wiley and Sons, Chichester (2009)

    Google Scholar 

  8. Ding, C., Li, T., Jordan, M.I.: IEEE T. Pattern. Anal. 32, 45–55 (2010)

    Article  Google Scholar 

  9. Ding, C., Li, T., Peng, W.: Nonnegative matrix factorization and probabilistic latent semantic indexing: Equivalence, chi-square statistic, and a hybrid method. In: Proc. AAAI National Conf. Artificial Intelligence (AAAI 2006) (2006)

    Google Scholar 

  10. Ding, C., Li, T., Peng, W., Park, H.: Orthogonal nonnegative matrix tri-factorizations for clustering. In: Proc 12th ACM SIGKDD Intl. Conf. Knowledge Discovery and Data Mining, pp. 126–135. ACM Press, New York (2006)

    Chapter  Google Scholar 

  11. Du, Q., Kopriva, I.: Neurocomputing 72, 2682–2692 (2009)

    Article  Google Scholar 

  12. Heiler, M., Schnoerr, C.: J. Mach. Learn. Res. 7, 1385–1407 (2006)

    MathSciNet  Google Scholar 

  13. Jain, A.K., Murty, M.N., Flynn, P.J.: ACM Comput. Surv. 31, 264–323 (1999)

    Article  Google Scholar 

  14. Jankowiak, M.: Application of nonnegative matrix factorization for text document classification. MSc thesis (supervised by Dr. R. Zdunek), Wroclaw University of Technology, Poland (2010) (in Polish)

    Google Scholar 

  15. Kim, H., Park, H.: Bioinformatics 23, 1495–1502 (2007)

    Article  Google Scholar 

  16. Kim, H., Park, H.: SIAM J. Matrix Anal. A 30, 713–730 (2008)

    Article  MATH  Google Scholar 

  17. Lawson, C.L., Hanson, R.J.: Solving Least Squares Problems. Prentice-Hall, Englewood Cliffs (1974)

    MATH  Google Scholar 

  18. Lee, D.D., Seung, H.S.: Nature 401, 788–791 (1999)

    Article  Google Scholar 

  19. Li, T., Ding, C.: The relationships among various nonnegative matrix factorization methods for clustering. In: Proc. 6th Intl. Conf. Data Mining (ICDM 2006), pp. 362–371. IEEE Computer Society, Washington DC, USA (2006)

    Chapter  Google Scholar 

  20. O’Grady, P., Pearlmutte, B.: Neurocomputing 72, 88–101 (2008)

    Article  Google Scholar 

  21. Sajda, P., Du, S., Brown, T.R., Stoyanova, R., Shungu, D.C., Mao, X., Parra, L.C.: IEEE T. Med. Imaging 23, 1453–1465 (2004)

    Article  Google Scholar 

  22. Shahnaz, F., Berry, M., Pauca, P., Plemmons, R.: Inform. Process. Manag. 42, 373–386 (2006)

    Article  MATH  Google Scholar 

  23. Sra, S., Dhillon, I.S.: Nonnegative matrix approximation: Algorithms and Applications. UTCS Technical Report TR-06-27, Austin, USA (2006), http://www.cs.utexas.edu/ftp/pub/techreports/tr06-27.pdf

  24. Xu, W., Liu, X., Gong, Y.: Document clustering based on non-negative matrix factorization. In: SIGIR 2003: Proc 26th Annual Intl ACM SIGIR Conf. Research and Development in Informaion Retrieval, pp. 267–273. ACM Press, New York (2003)

    Chapter  Google Scholar 

  25. Zdunek, R., Cichocki, A.: Comput. Intel. Neurosci. (939567) (2008)

    Google Scholar 

  26. Zdunek, R., Phan, A.H., Cichocki, A.: Aust. J. Intel. Inform. Process. Syst. 12, 16–22 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zdunek, R. (2011). Regularized NNLS Algorithms for Nonnegative Matrix Factorization with Application to Text Document Clustering. In: Burduk, R., Kurzyński, M., Woźniak, M., Żołnierek, A. (eds) Computer Recognition Systems 4. Advances in Intelligent and Soft Computing, vol 95. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20320-6_77

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20320-6_77

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20319-0

  • Online ISBN: 978-3-642-20320-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics