Abstract
This demo presents a decision tree based classificationsystem for uncertain data. Decision tree is a commonlyused data classification technique. Tree learning algorithms cangenerate decision tree models from a training data set. Whenworking on uncertain data or probabilistic data, the learning andprediction algorithms need handle the uncertainty cautiously, orelse the decision tree could be unreliable and prediction resultsmay be wrong. In this demo,we will present DTU, a new decisiontree based classification and prediction system for uncertaindata. This tool uses new measures for constructing, pruningand optimizing decision tree. These new measures are computedconsidering uncertain data probability distribution functions.Based on the new measures, the optimal splitting attributes andsplitting values can be identified and used in the decision tree.We will show in this demo that DTU can process various typesof uncertainties and it has satisfactory classification performanceeven when data is highly uncertain.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Qin, B., Xia, Y., Li, F.: DTU: A decision tree for uncertain data. In: Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, T.-B. (eds.) PAKDD 2009. LNCS, vol. 5476, pp. 4–15. Springer, Heidelberg (2009)
Tsang, S., Kao, B., Yip, K.Y., Ho, W.-S., Lee, S.D.: Decision treesfor uncertain data. In: ICDE (2009)
Singh, S., Mayfield, C., Prabhakar, S., Shah, R., Hambrusch, S.: Indexing categorical data with uncertainty. In: ICDE, pp. 616–625 (2007)
Agrawal, P., Benjelloun, O., Sarma, A.D., Hayworth, C., Nabar, S., Sugihara, T., Widom, J.: Trio: A system for data, uncertainty, andlineage. In: VLDB (2006)
Qin, B., Xia, Y., Prabhakar, S., Tu, Y.: A rule-based classification algorithmfor uncertain data. In: Proc. the IEEE Workshop on Managementand Mining of Uncertain Data, MOUND (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Qin, B., Xia, Y., Sathyesh, R., Ge, J., Probhakar, S. (2011). Classify Uncertain Data with Decision Tree. In: Yu, J.X., Kim, M.H., Unland, R. (eds) Database Systems for Advanced Applications. DASFAA 2011. Lecture Notes in Computer Science, vol 6588. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20152-3_38
Download citation
DOI: https://doi.org/10.1007/978-3-642-20152-3_38
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-20151-6
Online ISBN: 978-3-642-20152-3
eBook Packages: Computer ScienceComputer Science (R0)