[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Asymptotic Limits of a New Type of Maximization Recurrence with an Application to Bioinformatics

  • Conference paper
Theory and Applications of Models of Computation (TAMC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7287))

  • 1094 Accesses

Abstract

We study the asymptotic behavior of a new type of maximization recurrence, defined as follows. Let k be a positive integer and p k (x) a polynomial of degree k satisfying p k (0) = 0. Define A 0 = 0 and for n ≥ 1, let \(A_{n} = \max\nolimits_{0 \leq i < n} \{ A_{i} + n^{k} \, p_{k}(\frac{i}{n}) \}\). We prove that \(\lim_{n \rightarrow \infty} \frac{A_{n}}{n^k} \,=\, \sup \{ \frac{p_k(x)}{1-x^k}: 0 \leq x <1\}\). We also consider two closely related maximization recurrences S n and S n , defined as S 0 = S0 = 0, and for n ≥ 1, \(S_{n} = \max\nolimits_{0 \leq i < n} \{ S_{i} + \frac{i(n-i)(n-i-1)}{2} \}\) and \(S'_{n} = \max\nolimits_{0 \leq i < n} \{ S'_{i} + {n-i \choose 3} + 2i { n-i \choose 2} + (n-i){ i \choose 2} \}\). We prove that \(\lim\nolimits_{n \rightarrow \infty} \frac{S_{n}}{n^3} = \frac{2\sqrt{3}-3}{6} \approx 0.077350...\) and \(\lim\nolimits_{n \rightarrow \infty} \frac{S'_{n}}{3{n \choose 3}} = \frac{2(\sqrt{3}-1)}{3} \approx 0.488033...\), resolving an open problem from Bioinformatics about rooted triplets consistency in phylogenetic networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bininda-Emonds, O.R.P.: The evolution of supertrees. Trends in Ecology and Evolution 19(6), 315–322 (2004)

    Article  Google Scholar 

  2. Byrka, J., Gawrychowski, P., Huber, K.T., Kelk, S.: Worst-case optimal approximation algorithms for maximizing triplet consistency within phylogenetic networks. Journal of Discrete Algorithms 8(1), 65–75 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, 3rd edn. The MIT Press, Massachusetts (2009)

    MATH  Google Scholar 

  4. Felsenstein, J.: Inferring Phylogenies. Sinauer Associates, Inc., Sunderland (2004)

    Google Scholar 

  5. Fredman, M.L., Knuth, D.E.: Recurrence relations based on minimization. Journal of Mathematical Analysis and Applications 48(2), 534–559 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gąsieniec, L., Jansson, J., Lingas, A., Östlin, A.: On the complexity of constructing evolutionary trees. Journal of Combinatorial Optimization 3(2-3), 183–197 (1999)

    Article  MathSciNet  Google Scholar 

  7. Gusfield, D., Eddhu, S., Langley, C.: Efficient reconstruction of phylogenetic networks with constrained recombination. In: Proceedings of the Computational Systems Bioinformatics Conference (CSB2 2003), pp. 363–374 (2003)

    Google Scholar 

  8. Henzinger, M.R., King, V., Warnow, T.: Constructing a tree from homeomorphic subtrees, with applications to computational evolutionary biology. Algorithmica 24(1), 1–13 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hwang, H.-K., Tsai, T.-H.: An asymptotic theory for recurrence relations based on minimization and maximization. Theoretical Computer Science 290(3), 1475–1501 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Huson, D.H., Rupp, R., Scornavacca, C.: Phylogenetic Networks: Concepts, Algorithms and Applications. Cambridge University Press (2010)

    Google Scholar 

  11. Jansson, J., Nguyen, N., Sung, W.: Algorithms for combining rooted triplets into a galled phylogenetic network. SIAM Journal on Computing 35(5), 1098–1121 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kapoor, S., Reingold, E.M.: Recurrence relations based on minimization and maximization. Journal of Mathematical Analysis and Applications 109(2), 591–604 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  13. Li, Z., Reingold, E.M.: Solution of a divide-and-conquer maximin recurrence. SIAM Journal on Computing 18(6), 1188–1200 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  14. Morrison, D.: Introduction to Phylogenetic Networks. RJR Productions (2011)

    Google Scholar 

  15. Saha, A., Wagh, M.D.: Minmax recurrences in analysis of algorithms. In: Proceedings of Southeastcon 1993. IEEE (1993)

    Google Scholar 

  16. Wang, L., Ma, B., Li, M.: Fixed topology alignment with recombination. Discrete Applied Mathematics 104(1-3), 281–300 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chao, KM., Chu, AC., Jansson, J., Lemence, R.S., Mancheron, A. (2012). Asymptotic Limits of a New Type of Maximization Recurrence with an Application to Bioinformatics. In: Agrawal, M., Cooper, S.B., Li, A. (eds) Theory and Applications of Models of Computation. TAMC 2012. Lecture Notes in Computer Science, vol 7287. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29952-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29952-0_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29951-3

  • Online ISBN: 978-3-642-29952-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics