[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Finding Maximum Colorful Subtrees in Practice

  • Conference paper
Research in Computational Molecular Biology (RECOMB 2012)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 7262))

Abstract

In metabolomics and other fields dealing with small compounds, mass spectrometry is applied as sensitive high-throughput technique. Recently, fragmentation trees have been proposed to automatically analyze the fragmentation mass spectra recorded by such instruments. Computationally, this leads to the problem of finding a maximum weight subtree in an edge weighted and vertex colored graph, such that every color appears at most once in the solution.

We introduce new heuristics and an exact algorithm for this Maximum Colorful Subtree problem, and evaluate them against existing algorithms on real-world datasets. Our tree completion heuristic consistently scores better than other heuristics, while the integer programming-based algorithm produces optimal trees with modest running times. Our fast and accurate heuristic can help to determine molecular formulas based on fragmentation trees. On the other hand, optimal trees from the integer linear program are useful if structure is relevant, e.g., for tree alignments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets Möbius: fast subset convolution. In: Proc. of ACM Symposium on Theory of Computing (STOC 2007), pp. 67–74. ACM Press, New York (2007)

    Chapter  Google Scholar 

  2. Böcker, S., Rasche, F.: Towards de novo identification of metabolites by analyzing tandem mass spectra. Bioinformatics 24, I49–I55 (2008)

    Article  Google Scholar 

  3. Dondi, R., Fertin, G., Vialette, S.: Maximum Motif Problem in Vertex-Colored Graphs. In: Kucherov, G., Ukkonen, E. (eds.) CPM 2009. LNCS, vol. 5577, pp. 221–235. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  4. Dreyfus, S.E., Wagner, R.A.: The Steiner problem in graphs. Networks 1(3), 195–207 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fellows, M.R., Gramm, J., Niedermeier, R.: On the parameterized intractability of motif search problems. Combinatorica 26(2), 141–167 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fernie, A.R., Trethewey, R.N., Krotzky, A.J., Willmitzer, L.: Metabolite profiling: from diagnostics to systems biology. Nat. Rev. Mol. Cell Biol. 5(9), 763–769 (2004)

    Article  Google Scholar 

  7. Guillemot, S., Sikora, F.: Finding and Counting Vertex-Colored Subtrees. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 405–416. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Hill, D.W., Kertesz, T.M., Fontaine, D., Friedman, R., Grant, D.F.: Mass spectral metabonomics beyond elemental formula: Chemical database querying by matching experimental with computational fragmentation spectra. Anal. Chem. 80(14), 5574–5582 (2008)

    Article  Google Scholar 

  9. Ito, T.: Finding maximum weight arborescence in an edge-weighted DAG. Theoretical Computer Science – Stack Exchange, http://cstheory.stackexchange.com/q/4088/189 (retrieved: October 12, 2011)

  10. Koutis, I., Williams, R.: Limits and Applications of Group Algebras for Parameterized Problems. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 653–664. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Li, J.W.-H., Vederas, J.C.: Drug discovery and natural products: end of an era or an endless frontier? Science 325(5937), 161–165 (2009)

    Article  Google Scholar 

  12. Ljubić, I., Weiskircher, R., Pferschy, U., Klau, G.W., Mutzel, P., Fischetti, M.: Solving the prize-collecting Steiner tree problem to optimality. In: Proc. of Algorithm Engineering and Experiments (ALENEX 2005), pp. 68–76. SIAM (2005)

    Google Scholar 

  13. Oberacher, H., Pavlic, M., Libiseller, K., Schubert, B., Sulyok, M., Schuhmacher, R., Csaszar, E., Köfeler, H.C.: On the inter-instrument and inter-laboratory transferability of a tandem mass spectral reference library: 1. results of an Austrian multicenter study. J. Mass Spectrom. 44(4), 485–493 (2009)

    Article  Google Scholar 

  14. Rasche, F., Scheubert, K., Hufsky, F., Zichner, T., Kai, M., Svatoš, A., Böcker, S.: Identifying the unknowns by aligning fragmentation trees (October 2011) (manuscript)

    Google Scholar 

  15. Rasche, F., Svatoš, A., Maddula, R.K., Böttcher, C., Böcker, S.: Computing fragmentation trees from tandem mass spectrometry data. Anal. Chem. 83, 1243–1251 (2011)

    Article  Google Scholar 

  16. Scheubert, K., Hufsky, F., Rasche, F., Böcker, S.: Computing fragmentation trees from metabolite multiple mass spectrometry data. J. Comput. Biol. 18(11), 1383–1397 (2011)

    Article  Google Scholar 

  17. Scheubert, K., Hufsky, F., Rasche, F., Böcker, S.: Computing Fragmentation Trees from Metabolite Multiple Mass Spectrometry Data. In: Bafna, V., Sahinalp, S.C. (eds.) RECOMB 2011. LNCS, vol. 6577, pp. 377–391. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  18. Sikora, F.: An (almost complete) state of the art around the graph motif problem. Technical report, Université Paris-Est, France (2010), http://www-igm.univ-mlv.fr/~fsikora/pub/GraphMotif-Resume.pdf

  19. Sikora, F.: Aspects algorithmiques de la comparaison d’éléments biologiques. PhD thesis, Université Paris-Est (2011)

    Google Scholar 

  20. Xu, K., Li, W.: Many hard examples in exact phase transitions. Theor. Comput. Sci. 355(3), 291–302 (2006)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rauf, I., Rasche, F., Nicolas, F., Böcker, S. (2012). Finding Maximum Colorful Subtrees in Practice. In: Chor, B. (eds) Research in Computational Molecular Biology. RECOMB 2012. Lecture Notes in Computer Science(), vol 7262. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29627-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29627-7_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29626-0

  • Online ISBN: 978-3-642-29627-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics