Abstract
In this paper memristive logic circuits are evolved using Cartesian Genetic Programming. Graphs comprised of implication logic (IMP) nodes are compared to more ubiquitous NAND circuitry on a number of logic circuit problems and a robotic control task. Self-adaptive search parameters are used to provide each graph with autonomy with respect to its relative mutation rates. Results demonstrate that, although NAND-logic graphs are easier to evolve, IMP graphs carry benefits in terms of (i) numbers of memristors required (ii) the time required to process the graphs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Borghetti, J., Li, Z., Straznicky, J., Li, X., Ohlberg, D.A.A., Wu, W., Stewart, D.R., Williams, R.S.: A hybrid nanomemristor/transistor logic circuit capable of self-programming. Proceedings of the National Academy of Sciences 106(6), 1699–1703 (2009)
Borghetti, J., Snider, G.S., Kuekes, P.J., Yang, J.J., Stewart, D.R., Williams, R.S.: ’Memristive’ switches enable ’stateful’ logic operations via material implication. Nature 464(7290), 873–876 (2010)
Chua, L.: Memristor-the missing circuit element. IEEE Transactions on Circuit Theory 18(5), 507–519 (1971)
Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning, 1st edn. Addison-Wesley Longman Publishing Co., Inc., Boston (1989)
Harding, S., Miller, J.F., Banzhaf, W.: Self modifying cartesian genetic programming: Parity. In: Tyrrell, A. (ed.) 2009 IEEE Congress on Evolutionary Computation, May 18-21, pp. 285–292. IEEE Computational Intelligence Society, IEEE Press, Trondheim, Norway (2009)
Harding, S., Miller, J.F.: Evolution of Robot Controller Using Cartesian Genetic Programming. In: Keijzer, M., Tettamanzi, A., Collet, P., van Hemert, J., Tomassini, M. (eds.) EuroGP 2005. LNCS, vol. 3447, pp. 62–73. Springer, Heidelberg (2005)
Ho, Y., Huang, G.M., Li, P.: Nonvolatile memristor memory: device characteristics and design implications. In: Proceedings of the 2009 International Conference on Computer-Aided Design, ICCAD 2009, pp. 485–490. ACM, New York (2009)
Holland, J.H.: Adaptation. In: Rosen, R., Snell, F.M. (eds.) Progress in Theoretical Biology IV, pp. 263–293. Academic Press, New York (1976)
Howard, G.D., Gale, E., Bull, L., de Lacy Costello, B., Adamatzky, A.: Evolution of plastic learning in spiking networks via memristive connections. IEEE Transactions on Evolutionary Computing (to appear)
Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)
Kuekes, P.J., Stewart, D.R., Williams, R.S.: The crossbar latch: Logic value storage, restoration, and inversion in crossbar circuits. Journal of Applied Physics 97(3), 034301 (2005)
Lehtonen, E., Poikonen, J., Laiho, M.: Two memristors suffice to compute all boolean functions. Electronics Letters 46(3), 230–231 (2010)
Mead, C.: Neuromorphic electronic systems. Proceedings of the IEEE 78(10), 1629–1636 (1990)
Michel, O.: Webots: Professional mobile robot simulation. International Journal of Advanced Robotic Systems 1(1), 39–42 (2004)
Miller, J.F.: Cartesian Genetic Programming. Springer, Heidelberg (2011)
Miller, J.F.: Digital filter design at gate-level using evolutionary algorithms. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 1999, pp. 1127–1134. Morgan Kaufmann (1999)
Miller, J.F.: An empirical study of the efficiency of learning boolean functions using a cartesian genetic programming approach. In: Banzhaf, W., Daida, J., Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela, M., Smith, R.E. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference, July 13-17, vol. 2, pp. 1135–1142. Morgan Kaufmann, Orlando (1999)
Miller, J.F., Smith, S.L.: Redundancy and computational efficiency in cartesian genetic programming. IEEE Transactions on Evolutionary Computation 10(2), 167–174 (2006)
Miller, J.F., Thomson, P.: Cartesian Genetic Programming. In: Poli, R., Banzhaf, W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000. LNCS, vol. 1802, pp. 121–132. Springer, Heidelberg (2000)
Rajaei, A., Houshmand, M., Rouhani, M.: Optimization of Combinational Logic Circuits Using NAND Gates and Genetic Programming. In: Gaspar-Cunha, A., Takahashi, R., Schaefer, G., Costa, L. (eds.) Soft Computing in Industrial Applications. AISC, vol. 96, pp. 405–414. Springer, Heidelberg (2011)
Rechenberg, I.: Evolutionsstrategie: optimierung technischer systeme nach prinzipien der biologischen evolution. Frommann-Holzboog, Stuttgart (1973)
Snider, G.: Computing with hysteretic resistor crossbars. Applied Physics A: Materials Science and Processing 80, 1165–1172 (2005)
Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453, 80–83 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Howard, G.D., Bull, L., Adamatzky, A. (2012). Cartesian Genetic Programming for Memristive Logic Circuits. In: Moraglio, A., Silva, S., Krawiec, K., Machado, P., Cotta, C. (eds) Genetic Programming. EuroGP 2012. Lecture Notes in Computer Science, vol 7244. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29139-5_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-29139-5_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-29138-8
Online ISBN: 978-3-642-29139-5
eBook Packages: Computer ScienceComputer Science (R0)