[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Cartesian Genetic Programming for Memristive Logic Circuits

  • Conference paper
Genetic Programming (EuroGP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7244))

Included in the following conference series:

  • 1097 Accesses

Abstract

In this paper memristive logic circuits are evolved using Cartesian Genetic Programming. Graphs comprised of implication logic (IMP) nodes are compared to more ubiquitous NAND circuitry on a number of logic circuit problems and a robotic control task. Self-adaptive search parameters are used to provide each graph with autonomy with respect to its relative mutation rates. Results demonstrate that, although NAND-logic graphs are easier to evolve, IMP graphs carry benefits in terms of (i) numbers of memristors required (ii) the time required to process the graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Borghetti, J., Li, Z., Straznicky, J., Li, X., Ohlberg, D.A.A., Wu, W., Stewart, D.R., Williams, R.S.: A hybrid nanomemristor/transistor logic circuit capable of self-programming. Proceedings of the National Academy of Sciences 106(6), 1699–1703 (2009)

    Article  Google Scholar 

  2. Borghetti, J., Snider, G.S., Kuekes, P.J., Yang, J.J., Stewart, D.R., Williams, R.S.: ’Memristive’ switches enable ’stateful’ logic operations via material implication. Nature 464(7290), 873–876 (2010)

    Article  Google Scholar 

  3. Chua, L.: Memristor-the missing circuit element. IEEE Transactions on Circuit Theory 18(5), 507–519 (1971)

    Article  Google Scholar 

  4. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning, 1st edn. Addison-Wesley Longman Publishing Co., Inc., Boston (1989)

    MATH  Google Scholar 

  5. Harding, S., Miller, J.F., Banzhaf, W.: Self modifying cartesian genetic programming: Parity. In: Tyrrell, A. (ed.) 2009 IEEE Congress on Evolutionary Computation, May 18-21, pp. 285–292. IEEE Computational Intelligence Society, IEEE Press, Trondheim, Norway (2009)

    Chapter  Google Scholar 

  6. Harding, S., Miller, J.F.: Evolution of Robot Controller Using Cartesian Genetic Programming. In: Keijzer, M., Tettamanzi, A., Collet, P., van Hemert, J., Tomassini, M. (eds.) EuroGP 2005. LNCS, vol. 3447, pp. 62–73. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Ho, Y., Huang, G.M., Li, P.: Nonvolatile memristor memory: device characteristics and design implications. In: Proceedings of the 2009 International Conference on Computer-Aided Design, ICCAD 2009, pp. 485–490. ACM, New York (2009)

    Chapter  Google Scholar 

  8. Holland, J.H.: Adaptation. In: Rosen, R., Snell, F.M. (eds.) Progress in Theoretical Biology IV, pp. 263–293. Academic Press, New York (1976)

    Google Scholar 

  9. Howard, G.D., Gale, E., Bull, L., de Lacy Costello, B., Adamatzky, A.: Evolution of plastic learning in spiking networks via memristive connections. IEEE Transactions on Evolutionary Computing (to appear)

    Google Scholar 

  10. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  11. Kuekes, P.J., Stewart, D.R., Williams, R.S.: The crossbar latch: Logic value storage, restoration, and inversion in crossbar circuits. Journal of Applied Physics 97(3), 034301 (2005)

    Article  Google Scholar 

  12. Lehtonen, E., Poikonen, J., Laiho, M.: Two memristors suffice to compute all boolean functions. Electronics Letters 46(3), 230–231 (2010)

    Article  Google Scholar 

  13. Mead, C.: Neuromorphic electronic systems. Proceedings of the IEEE 78(10), 1629–1636 (1990)

    Article  Google Scholar 

  14. Michel, O.: Webots: Professional mobile robot simulation. International Journal of Advanced Robotic Systems 1(1), 39–42 (2004)

    Google Scholar 

  15. Miller, J.F.: Cartesian Genetic Programming. Springer, Heidelberg (2011)

    Book  MATH  Google Scholar 

  16. Miller, J.F.: Digital filter design at gate-level using evolutionary algorithms. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 1999, pp. 1127–1134. Morgan Kaufmann (1999)

    Google Scholar 

  17. Miller, J.F.: An empirical study of the efficiency of learning boolean functions using a cartesian genetic programming approach. In: Banzhaf, W., Daida, J., Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela, M., Smith, R.E. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference, July 13-17, vol. 2, pp. 1135–1142. Morgan Kaufmann, Orlando (1999)

    Google Scholar 

  18. Miller, J.F., Smith, S.L.: Redundancy and computational efficiency in cartesian genetic programming. IEEE Transactions on Evolutionary Computation 10(2), 167–174 (2006)

    Article  Google Scholar 

  19. Miller, J.F., Thomson, P.: Cartesian Genetic Programming. In: Poli, R., Banzhaf, W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000. LNCS, vol. 1802, pp. 121–132. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  20. Rajaei, A., Houshmand, M., Rouhani, M.: Optimization of Combinational Logic Circuits Using NAND Gates and Genetic Programming. In: Gaspar-Cunha, A., Takahashi, R., Schaefer, G., Costa, L. (eds.) Soft Computing in Industrial Applications. AISC, vol. 96, pp. 405–414. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  21. Rechenberg, I.: Evolutionsstrategie: optimierung technischer systeme nach prinzipien der biologischen evolution. Frommann-Holzboog, Stuttgart (1973)

    Google Scholar 

  22. Snider, G.: Computing with hysteretic resistor crossbars. Applied Physics A: Materials Science and Processing 80, 1165–1172 (2005)

    Article  Google Scholar 

  23. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453, 80–83 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Howard, G.D., Bull, L., Adamatzky, A. (2012). Cartesian Genetic Programming for Memristive Logic Circuits. In: Moraglio, A., Silva, S., Krawiec, K., Machado, P., Cotta, C. (eds) Genetic Programming. EuroGP 2012. Lecture Notes in Computer Science, vol 7244. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29139-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29139-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29138-8

  • Online ISBN: 978-3-642-29139-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics