Abstract
Cartesian genetic programming (CGP) is a branch of genetic programming which has been utilized in various applications. This paper proposes to introduce coevolution to CGP in order to accelerate the task of symbolic regression. In particular, fitness predictors which are small subsets of the training set are coevolved with CGP programs. It is shown using five symbolic regression problems that the (median) execution time can be reduced 2–5 times in comparison with the standard CGP.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Dolin, B., Bennett III, F.H., Reiffel, G.: Co-evolving an effective fitness sample: Experiments in symbolic regression and distributed robot control. In: Proc. of the 2002 ACM Symp. on Applied Computing, pp. 553–559. ACM, New York (2002)
Dolinsky, J.U., Jenkinson, I.D., Colquhoun, G.J.: Aplication of genetic programming to the calibration of industrial robots. Computers in Industry 58(3), 255–264 (2007)
Gagné, C., Parizeau, M.: Co-evolution of nearest neighbor classifiers. International Journal of Pattern Recognition and Artificial Inteligence 21(5), 921–946 (2007)
Harrison, M.L., Foster, J.A.: Co-evolving Faults to Improve the Fault Tolerance of Sorting Networks. In: Keijzer, M., O’Reilly, U.-M., Lucas, S., Costa, E., Soule, T. (eds.) EuroGP 2004. LNCS, vol. 3003, pp. 57–66. Springer, Heidelberg (2004)
Hillis, W.D.: Co-evolving parasites improve simulated evolution as an optimization procedure. Physica D 42(1), 228–234 (1990)
Imamura, K., Foster, J.A., Krings, A.W.: The Test Vector Problem and Limitations to Evolving Digital Circuits. In: Proc. of the 2nd NASA/DoD Workshop on Evolvable Hardware, pp. 75–79. IEEE Computer Society (2000)
Jin, Y.: A comprehensive survey of fitness approximation in evolutionary computation. Soft Computing Journal 9(1), 3–12 (2005)
Mendes, R.R.F., de Voznika, F.B., Freitas, A.A., Nievola, J.C.: Discovering Fuzzy Classification Rules with Genetic Programming and Co-evolution. In: Siebes, A., De Raedt, L. (eds.) PKDD 2001. LNCS (LNAI), vol. 2168, pp. 314–325. Springer, Heidelberg (2001)
Miller, J.F., Thomson, P.: Aspects of Digital Evolution: Geometry and Learning. In: Sipper, M., Mange, D., Pérez-Uribe, A. (eds.) ICES 1998. LNCS, vol. 1478, pp. 25–35. Springer, Heidelberg (1998)
Miller, J.F.: Cartesian Genetic Programming. Springer, Heidelberg (2011)
Miller, J.F., Thomson, P.: Cartesian Genetic Programming. In: Poli, R., Banzhaf, W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000. LNCS, vol. 1802, pp. 121–132. Springer, Heidelberg (2000)
Pagie, L., Hogeweg, P.: Evolutionary consequences of coevolving targets. Evolutionary Computation 5(4), 401–418 (1997)
Schmidt, M., Lipson, H.: Co-evolving fitness predictors for accelerating and reducing evaluations. In: Genetic Prog. Theory and Practice IV, vol. 5, pp. 113–130 (2006)
Schmidt, M.D., Lipson, H.: Coevolution of Fitness Predictors. IEEE Transactions on Evolutionary Computation 12(6), 736–749 (2008)
Vasicek, Z., Sekanina, L.: Formal verification of candidate solutions for post-synthesis evolutionary optimization in evolvable hardware. Genetic Programming and Evolvable Machines 12(3), 305–327 (2011)
Vladislavleva, E.: Symbolic Regression: Toy Problems for Symbolic Regression (2009-2010), http://www.vanillamodeling.com/toyproblems.html
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Šikulová, M., Sekanina, L. (2012). Coevolution in Cartesian Genetic Programming. In: Moraglio, A., Silva, S., Krawiec, K., Machado, P., Cotta, C. (eds) Genetic Programming. EuroGP 2012. Lecture Notes in Computer Science, vol 7244. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29139-5_16
Download citation
DOI: https://doi.org/10.1007/978-3-642-29139-5_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-29138-8
Online ISBN: 978-3-642-29139-5
eBook Packages: Computer ScienceComputer Science (R0)