[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Coevolution in Cartesian Genetic Programming

  • Conference paper
Genetic Programming (EuroGP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7244))

Included in the following conference series:

Abstract

Cartesian genetic programming (CGP) is a branch of genetic programming which has been utilized in various applications. This paper proposes to introduce coevolution to CGP in order to accelerate the task of symbolic regression. In particular, fitness predictors which are small subsets of the training set are coevolved with CGP programs. It is shown using five symbolic regression problems that the (median) execution time can be reduced 2–5 times in comparison with the standard CGP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dolin, B., Bennett III, F.H., Reiffel, G.: Co-evolving an effective fitness sample: Experiments in symbolic regression and distributed robot control. In: Proc. of the 2002 ACM Symp. on Applied Computing, pp. 553–559. ACM, New York (2002)

    Chapter  Google Scholar 

  2. Dolinsky, J.U., Jenkinson, I.D., Colquhoun, G.J.: Aplication of genetic programming to the calibration of industrial robots. Computers in Industry 58(3), 255–264 (2007)

    Article  Google Scholar 

  3. Gagné, C., Parizeau, M.: Co-evolution of nearest neighbor classifiers. International Journal of Pattern Recognition and Artificial Inteligence 21(5), 921–946 (2007)

    Article  Google Scholar 

  4. Harrison, M.L., Foster, J.A.: Co-evolving Faults to Improve the Fault Tolerance of Sorting Networks. In: Keijzer, M., O’Reilly, U.-M., Lucas, S., Costa, E., Soule, T. (eds.) EuroGP 2004. LNCS, vol. 3003, pp. 57–66. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Hillis, W.D.: Co-evolving parasites improve simulated evolution as an optimization procedure. Physica D 42(1), 228–234 (1990)

    Article  Google Scholar 

  6. Imamura, K., Foster, J.A., Krings, A.W.: The Test Vector Problem and Limitations to Evolving Digital Circuits. In: Proc. of the 2nd NASA/DoD Workshop on Evolvable Hardware, pp. 75–79. IEEE Computer Society (2000)

    Google Scholar 

  7. Jin, Y.: A comprehensive survey of fitness approximation in evolutionary computation. Soft Computing Journal 9(1), 3–12 (2005)

    Article  Google Scholar 

  8. Mendes, R.R.F., de Voznika, F.B., Freitas, A.A., Nievola, J.C.: Discovering Fuzzy Classification Rules with Genetic Programming and Co-evolution. In: Siebes, A., De Raedt, L. (eds.) PKDD 2001. LNCS (LNAI), vol. 2168, pp. 314–325. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  9. Miller, J.F., Thomson, P.: Aspects of Digital Evolution: Geometry and Learning. In: Sipper, M., Mange, D., Pérez-Uribe, A. (eds.) ICES 1998. LNCS, vol. 1478, pp. 25–35. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  10. Miller, J.F.: Cartesian Genetic Programming. Springer, Heidelberg (2011)

    Book  MATH  Google Scholar 

  11. Miller, J.F., Thomson, P.: Cartesian Genetic Programming. In: Poli, R., Banzhaf, W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000. LNCS, vol. 1802, pp. 121–132. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  12. Pagie, L., Hogeweg, P.: Evolutionary consequences of coevolving targets. Evolutionary Computation 5(4), 401–418 (1997)

    Article  Google Scholar 

  13. Schmidt, M., Lipson, H.: Co-evolving fitness predictors for accelerating and reducing evaluations. In: Genetic Prog. Theory and Practice IV, vol. 5, pp. 113–130 (2006)

    Google Scholar 

  14. Schmidt, M.D., Lipson, H.: Coevolution of Fitness Predictors. IEEE Transactions on Evolutionary Computation 12(6), 736–749 (2008)

    Article  Google Scholar 

  15. Vasicek, Z., Sekanina, L.: Formal verification of candidate solutions for post-synthesis evolutionary optimization in evolvable hardware. Genetic Programming and Evolvable Machines 12(3), 305–327 (2011)

    Google Scholar 

  16. Vladislavleva, E.: Symbolic Regression: Toy Problems for Symbolic Regression (2009-2010), http://www.vanillamodeling.com/toyproblems.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Šikulová, M., Sekanina, L. (2012). Coevolution in Cartesian Genetic Programming. In: Moraglio, A., Silva, S., Krawiec, K., Machado, P., Cotta, C. (eds) Genetic Programming. EuroGP 2012. Lecture Notes in Computer Science, vol 7244. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29139-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29139-5_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29138-8

  • Online ISBN: 978-3-642-29139-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics