Abstract
In this paper, we focus on a real world scenario of energy management of a smart home. External variable signals, reflecting the low voltage grid’s state, are used to address the challenge of balancing energy demand and supply. The problem is formulated as a nonlinear integer programming problem and a load management system, based on a customized evolutionary algorithm with local search, is proposed to control intelligent appliances, decentralized power plants and electrical storages in an optimized way with respect to the given external signals. The nonlinearities present in the integer programming problem makes it difficult for exact solvers. The results of this paper show the efficacy of evolutionary algorithms for solving such combinatorial problems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abras, S., Ploix, S., Pesty, S., Jacomino, M.: A multi-agent home automation system for power management. In: Informatics in Control Automation and Robotics. Lecture Notes in Electrical Engineering. Springer (2009)
Allerding, F., Schmeck, H.: Organic smart home - architecture for energy management in intelligent buildings. In: ICAC 2011 (2011)
Bao, K., Allerding, F., Schmeck, H.: User behavior prediction for energy management in smart homes. In: Proceedings of the FSKD 2011 (2011)
Fischer, A., Shukla, P.K.: A Levenberg-Marquardt algorithm for unconstrained multicriteria optimization. Oper. Res. Lett. 36(5), 643–646 (2008)
Fischer, A., Shukla, P.K., Wang, M.: On the inexactness level of robust levenberg–marquardt methods. Optimization 59(2), 273–287 (2010)
Guldemond, T., Hurink, J., Paulus, J., Schutten, J.: Time-constrained project scheduling. Journal of Scheduling (2008)
Li, D., Sun, X.: Nonlinear integer programming. International Series in Operations Research & Management Science, p. 84. Springer, New York (2006)
Meier, H., Fünfgeld, C., Schieferdecker, B.: Repräsentative VDEW-Lastprofile. Tech. rep., Verband der Elektrizitätswirschaft (1999)
Mesghouni, K., Hammadi, S.: Evolutionary algorithms for job-shop scheduling. Applied Mathematics and Computer Science (2004)
Müller-Schloer, C., Schmeck, H., Ungerer, T.: Organic Computing - A Paradigm Shift for Complex Systems. Birkhauser Verlag AG (2011)
Williams, H.P.: Model building in mathematical programming, 3rd edn. A Wiley-Interscience Publication, John Wiley & Sons Ltd, Chichester (1990)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Allerding, F., Premm, M., Shukla, P.K., Schmeck, H. (2012). Electrical Load Management in Smart Homes Using Evolutionary Algorithms. In: Hao, JK., Middendorf, M. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2012. Lecture Notes in Computer Science, vol 7245. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29124-1_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-29124-1_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-29123-4
Online ISBN: 978-3-642-29124-1
eBook Packages: Computer ScienceComputer Science (R0)