Abstract
Motivated by issues in allocating limited preventative resources to protect a landscape against the spread of a wildfire from a stochastic ignition point, we give approximation algorithms for a new family of stochastic optimization problems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ageev, A.A., Sviridenko, M.: Pipage rounding: A new method of constructing algorithms with proven performance guarantee. J. Comb. Optim. 8(3), 307–328 (2004)
Engelberg, R., Könemann, J., Leonardi, S., Naor, J(S.): Cut Problems in Graphs with a Budget Constraint. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 435–446. Springer, Heidelberg (2006)
Finney, M.A.: A computational method for optimising fuel treatment locations. International Journal of Wildland Fire 16, 702–711 (2007)
Hayrapetyan, A., Kempe, D., Pál, M., Svitkina, Z.: Unbalanced Graph Cuts. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 191–202. Springer, Heidelberg (2005)
Räcke, H.: Optimal hierarchical decompositions for congestion minimization in networks. In: 40th STOC, pp. 255–264 (2008)
Shmoys, D., Spencer, G.: Full paper: Approximation algorithms for fragmenting a graph against a stochastically-located threat, http://people.orie.cornell.edu/gms39/images/documents/gsfragment.pdf
Sviridenko, M.: A note on maximizing a submodular set function subject to a knapsack constraint. Operations Research Letters 32, 41–43 (2004)
Wei, Y., Rideout, D., Kirsch, A.: An opt. model for locating fuel treatments across a landscape to reduce expected fire losses. Can. J. of Forest Res. 38, 868–877 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Shmoys, D.B., Spencer, G. (2012). Approximation Algorithms for Fragmenting a Graph against a Stochastically-Located Threat. In: Solis-Oba, R., Persiano, G. (eds) Approximation and Online Algorithms. WAOA 2011. Lecture Notes in Computer Science, vol 7164. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29116-6_11
Download citation
DOI: https://doi.org/10.1007/978-3-642-29116-6_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-29115-9
Online ISBN: 978-3-642-29116-6
eBook Packages: Computer ScienceComputer Science (R0)