[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Real-World Problem for Checking the Sensitiveness of Evolutionary Algorithms to the Choice of the Random Number Generator

  • Conference paper
Hybrid Artificial Intelligent Systems (HAIS 2012)

Abstract

This article presents an analysis of the sensitiveness of evolutionary algorithms to the change of the random number generator when using a real-world problem —the fitting of a theoretical curve to an experimental data set— as test. On the one hand, the evolutionary algorithms selected: particle swarm algorithm, differential evolution and genetic algorithm are widely used in optimization problems. And, on the other hand, the random number generator used: Mersenne Twister and GCC rand(), are the most frequently linked to evolutionary algorithms, as well as they are considered as high-quality. As a consequence of this work, an assessment is stated about the sensitiveness of the evolutionary algorithms studied to the choice of the random number generator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cantú-Paz, E.: On random numbers and the performance of genetic algorithms. In: GECCO, pp. 311–318. Morgan Kaufmann (2002)

    Google Scholar 

  2. Abraham, A., Corchado, E., Corchado, J.M.: Hybrid learning machines. Neurocomputing 72(13-15), 2729–2730 (2009)

    Article  Google Scholar 

  3. Corchado, E., Abraham, A., de Carvalho, A.C.P.L.F.: Hybrid intelligent algorithms and applications. Inf. Sci. 180(14), 2633–2634 (2010)

    Article  Google Scholar 

  4. Corchado, E., Graña, M., Wozniak, M.: Editorial: New trends and applications on hybrid artificial intelligence systems. Neurocomputing 75(1), 61–63 (2012)

    Article  Google Scholar 

  5. Meysenburg, M.M., Foster, J., Saghi, G., Dickinson, J., Jacobsen, R.T., Shreeve, J.M.: The effect of pseudo-random number generator quality on the performance of a simple genetic algorithm. Master’s thesis, University of Idaho, Idaho (1997)

    Google Scholar 

  6. Meysenburg, M.M., Foster, J.A.: The quality of pseudo-random number generations and simple genetic algorithm performance. In: Bäck, T. (ed.) ICGA, pp. 276–282. Morgan Kaufmann (1997)

    Google Scholar 

  7. Meysenburg, M.M., Foster, J.A.: Randomness and GA performance, revisited. In: Banzhaf, W., Daida, J., Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela, M., Smith, R.E. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference, July 13-17, vol. 1, pp. 425–432. Morgan Kaufmann, Orlando (1999)

    Google Scholar 

  8. Cárdenas-Montes, M., Vega-Rodríguez, M.A., Gómez-Iglesias, A.: Sensitiveness of Evolutionary Algorithms to the Random Number Generator. In: Dobnikar, A., Lotrič, U., Šter, B. (eds.) ICANNGA 2011, Part I. LNCS, vol. 6593, pp. 371–380. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Tang, K., Li, X., Suganthan, P.N., Yang, Z., Weise, T.: Benchmark functions for the cec’2010 special session and competition on large-scale global optimization. Technical report, Nature Inspired Computation and Applications Laboratory (NICAL), School of Computer Science and Technology, University of Science and Technology of China (USTC), Electric Building No. 2, Room 504, West Campus, Huangshan Road, Hefei 230027, Anhui, China (2009)

    Google Scholar 

  10. Tirronen, V., Äyrämö, S., Weber, M.: Study on the Effects of Pseudorandom Generation Quality on the Performance of Differential Evolution. In: Dobnikar, A., Lotrič, U., Šter, B. (eds.) ICANNGA 2011, Part I. LNCS, vol. 6593, pp. 361–370. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  11. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, vol. IV, pp. 1942–1948 (1995)

    Google Scholar 

  12. Eberhart, R.C., Shi, Y., Kennedy, J.: Swarm Intelligence (The Morgan Kaufmann Series in Artificial Intelligence), 1st edn. Morgan Kaufmann (April 2001)

    Google Scholar 

  13. Price, K.V., Storn, R., Lampinen, J.: Differential Evolution: A practical Approach to Global Optimization. Springer, Berlin (2005)

    MATH  Google Scholar 

  14. Storn, R., Price, K.: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. J. of Global Optimization 11(4), 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer-Verlag New York, Inc. (1994)

    Google Scholar 

  16. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge (1998)

    MATH  Google Scholar 

  17. Alba, E., Tomassini, M.: Parallelism and evolutionary algorithms. IEEE Trans. Evolutionary Computation 6(5), 443–462 (2002)

    Article  Google Scholar 

  18. Matsumoto, M., Nishimura, T.: Mersenne twister: A 623-dimensionally equidistributed uniform pseudorandom number generator. ACM Transactions on Modeling and Computer Simulation 8(1), 3–30 (1999)

    Article  Google Scholar 

  19. Press, W., Flannery, B., Teukolsky, S., Vetterling, W.: Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press (1992)

    Google Scholar 

  20. García, S., Molina, D., Lozano, M., Herrera, F.: A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the cec’2005 special session on real parameter optimization. J. Heuristics 15(6), 617–644 (2009)

    Article  MATH  Google Scholar 

  21. García, S., Fernández, A., Luengo, J., Herrera, F.: A study of statistical techniques and performance measures for genetics-based machine learning: accuracy and interpretability. Soft Comput. 13(10), 959–977 (2009)

    Article  Google Scholar 

  22. García, S., Fernández, A., Luengo, J., Herrera, F.: Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power. Inf. Sci. 180(10), 2044–2064 (2010)

    Article  Google Scholar 

  23. Montgomery, D., Runger, G.: Applied Statistics and Probability for Engineers. John Wiley and Sons Ltd., New York (2002)

    Google Scholar 

  24. Tang, K., Yao, X., Suganthan, P.N., MacNish, C., Chen, Y.P., Chen, C.M., Yang, Z.: Benchmark functions for the CEC 2008 special session and competition on large scale global optimization. Technical report, Nature Inspired Computation and Applications Laboratory, USTC, China (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cárdenas-Montes, M., Vega-Rodríguez, M.A., Gómez-Iglesias, A. (2012). Real-World Problem for Checking the Sensitiveness of Evolutionary Algorithms to the Choice of the Random Number Generator. In: Corchado, E., Snášel, V., Abraham, A., Woźniak, M., Graña, M., Cho, SB. (eds) Hybrid Artificial Intelligent Systems. HAIS 2012. Lecture Notes in Computer Science(), vol 7208. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28942-2_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28942-2_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28941-5

  • Online ISBN: 978-3-642-28942-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics