[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Hybrid Artificial Intelligence Approaches on Vehicle Routing Problem in Logistics Distribution

  • Conference paper
Hybrid Artificial Intelligent Systems (HAIS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7208))

Included in the following conference series:

Abstract

Biological intelligence for modelling and optimization on vehicle routing problem of logistics distribution and supply chain management systems are presented in this paper. Logistics distribution is adaptive, dynamic, and open self-organizing system, which is maintained by flows of information, materials, goods, funds, and energy. The aim of this research is to summarize different individual bio-inspired methods, evolutionary computing, genetic algorithm, ant colony optimization, artificial immune systems, and to obtain power extension of these hybrid approaches. In general, these bio-inspired hybrid approaches are more competitive than the classical problem-solving methodology including improvement heuristics methods or individual bio-inspired methods and their solutions in logistics distribution and supply chain management applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dantzig, G.B., Ramser, J.H.: The truck dispatching problem. Management Science 6(1), 80–91 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abraham, A., Corchado, E., Corchado, J.M.: Hybrid Learning Machines. Neurocomputing 72(13-15), 2729–2730 (2009)

    Article  Google Scholar 

  3. Corchado, E., Graña, M., Wozniak, M.: New trends and applications on hybrid artificial intelligence systems. Neurocomputing 75(1), 61–63 (2012)

    Article  Google Scholar 

  4. Pedrycz, W., Aliev, R.: Logic-oriented neural networks for fuzzy neurocomputing. Neurocomputing 73(1-3), 10–23 (2009)

    Article  Google Scholar 

  5. García, S., Fernández, A., Luengo, J., Herrera, F.: Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power. Information Sciences 180(10), 2044–2064 (2010)

    Article  Google Scholar 

  6. Simić, D., Simić, S.: A review: Approach of fuzzy models applications in logistics. In: Burduk, R., Kurzyński, M., Woźniak, M., Żołnierek, A. (eds.) Computer Recognition Systems 4. AISC, vol. 95, pp. 717–726. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  7. Kudumovic, D., Mujevic, M., Sukic, C.: New trends and ideas in the application of multi-modal transportation systems. Technics Technologies Education Management 6(2), 241–246 (2011)

    Google Scholar 

  8. Huanglan, C.C.: The mode of vehicle routing problem and the of brain power heuristic algorithm. Computer Development and Application 16, 2–5 (2003)

    Google Scholar 

  9. Laporte, G.: The vehicle routing problem: an overview of exact and approximate algorithms. European Journal of Operational Research 59, 345–358 (1992)

    Article  MATH  Google Scholar 

  10. Rao, V.B.: Neural networks and fuzzy logic. M&T Books, IDG Books Worldwide (1995)

    Google Scholar 

  11. Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B.: The traveling salesman problem: A guided tour of combinatorial optimization. Wiley (1985)

    Google Scholar 

  12. Eielst, H.A., Laporte, G.: A historical perspective on arc routing. In: Dror, M. (ed.) Arc Routing: Theory, Solutions and Applications. Springer, Berlin (2000)

    Google Scholar 

  13. Lin, S.: Computer solutions of travelling salesman problem. Bell System Technical Journal 44, 2245–2269 (1965)

    MathSciNet  MATH  Google Scholar 

  14. Beyer, H.-G., Schwelef, H.-P.: Evolution strategies: A comprehensive introduction. Natural Computing 1(1), 3–52 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Homberger, J., Gehring, H.: Two evolutionary metaheuristics for the vehicle routingproblem with time windows. INFOR 37, 297–318 (1999)

    Google Scholar 

  16. Holland, J.H.: Adaptation in natural and artificial systems. MIT Press, Cambridge (1992)

    Google Scholar 

  17. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: Optimization by a colony cooperation agents. IEEE Transactions on Systems, Man and Cybernetics, Part 2 26(1), 1–13 (1996)

    Google Scholar 

  18. Dorigo, M., Gambardella, L.M.: Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computing 1(1), 53–66 (1997)

    Article  Google Scholar 

  19. Stutzle, T., Hoos, H.H.: MAX-MIN ant system. Future Generation Computer System 16(8), 889–914 (2000)

    Article  Google Scholar 

  20. Gambardella, L.M., Taillard, E.D., Agazzi, G.: MACS-VRPTW: A multiple ant colony system for vehicle routing problems with time windows. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 63–76. McGraw-Hill, London (1999)

    Google Scholar 

  21. Berger, J., Barkaoui, M., Braysys, O.: A route-direction hybrid genetic approach for vehicle routing problem with time windows. Information System and Operational Research 41, 179–194 (2003)

    Google Scholar 

  22. de Castro, L.N., Timmis, J.: Artificial immune systems: A new computational intelligence approach. Springer, London (2002)

    MATH  Google Scholar 

  23. Keko, H., Skok, M., Skrelec, D.: Solving the distribution network routing problem with artificial immune systems. In: Proceedings of the IEEE Mediterranean Electrotechnical Conference, pp. 959–962 (2004)

    Google Scholar 

  24. Ma, J., Zou, H., Gao, L.-Q., Li, D.: Immune genetic algorithm for vehicle routing problem with time windows. In: Proceedings of the Fifth International Conference on Machine Learning and Cybernetics, pp. 3465–3469 (2006)

    Google Scholar 

  25. Corchado, E., Abraham, A., de Carvalho, A.: Hybrid Intelligent Algorithms and Applications. Information Science 180(14), 2633–2634 (2010)

    Article  Google Scholar 

  26. Moscato, P., Cotta, C.: A gentle introduction to memetic algorithms. In: Glover, F., Kochenberger, G.A. (eds.) Handbook of Metaheuristics, pp. 105–144. Kluwer, Boston (2003)

    Google Scholar 

  27. Mester, D., Braysys, O.: Active guided evolution strategies for large scale vehicle routing problems with time windows. Computer & Operations Research 32, 1593–1614 (2005)

    Article  Google Scholar 

  28. Voudouris, C., Tsanh, E.P.K.: Guided local search. Technical Report CSM-247. Department of Computer Sciences. University of Essex, Colchester, UK (1995)

    Google Scholar 

  29. Mester, D., Braysy, O., Dullaert, W.: A multi-parametric evolution strategies algorithm for vehicle routing problems. Expert Systems with Applications 34, 2964–2975 (2007)

    MATH  Google Scholar 

  30. Christofides, N., Mingozzi, A., Toth, P.: The vehicle routing problem. In: Christofides, N., Mingozzi, A., Toth, P. (eds.) Combinatorial Optimization, pp. 315–338. Wiley (1979)

    Google Scholar 

  31. Prakash, A., Deshmukh, S.G.: A multi-criteria customer allocation problem in supply chain environment: an artificial immune system with fuzzy logic controller based approach. Expert Systems with Applications 38(4), 3199–3208 (2011)

    Article  Google Scholar 

  32. Hajiaghaei-Keshteli, M.: The allocation of customers to potential distribution centers in supply chain networks: GA and AIA approaches. Applied Soft Computing Journal 11(2), 2069–2078 (2011)

    Article  Google Scholar 

  33. Wang, Y.J.: Improving particle swarm optimization performance with local search for high-dimensional function optimization. Optimization Methods and Software 25(5), 781–795 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Meeran, S., Morshed, M.S.: A hybrid genetic tabu search algorithm for solving job shop scheduling problems: a case study. Journal of Intelligent Manufacturing, doi:10.1007/s10845-011-0520-x

    Google Scholar 

  35. Wang, X., Gao, X.Z., Ovaska, S.J.: A hybrid artificial immune optimization method. International Journal of Computational Intelligence Systems 2(3), 249–256 (2009)

    Google Scholar 

  36. Guo, D., Wang, J., Huang, J., Han, R., Song, M.: Chaotic-NSGA-II: an effective algorithm to solve multi-objective optimization problems. In: Proceedings of the International Conference on Intelligent Computing and Integrated Systems (ICISS 2010), pp. 20–23 (2010)

    Google Scholar 

  37. Zhang, G.: Quantum-inspired evolutionary algorithms: a survey and empirical study. Journal of Heuristics 17(3), 303–351 (2010)

    Article  Google Scholar 

  38. Tao, F., Zhang, L., Zhang, Z.H., Nee, A.Y.C.: A quantum multi-agent evolutionary algorithm for selection of partners in a virtual enterprise. Manufacturing Technology 59(1), 485–488 (2010)

    Google Scholar 

  39. Wozniak, M., Zmyslony, M.: Designing Fusers on the Basis of Discriminants – Evolutionary and Neural Methods of Training. In: Graña Romay, M., Corchado, E., Garcia Sebastian, M.T. (eds.) HAIS 2010. LNCS, vol. 6076, pp. 590–597. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Simić, D., Simić, S. (2012). Hybrid Artificial Intelligence Approaches on Vehicle Routing Problem in Logistics Distribution. In: Corchado, E., Snášel, V., Abraham, A., Woźniak, M., Graña, M., Cho, SB. (eds) Hybrid Artificial Intelligent Systems. HAIS 2012. Lecture Notes in Computer Science(), vol 7208. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28942-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28942-2_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28941-5

  • Online ISBN: 978-3-642-28942-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics