[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7180))

Abstract

In data words, each position carries not only a letter form a finite alphabet, as the usual words do, but also a data value coming from an infinite domain. There has been a renewed interest in them due to applications in querying and reasoning about data models with complex structural properties, notably XML, and more recently, graph databases. Logical formalisms designed for querying such data often require concise and easily understandable presentations of regular languages over data words.

Our goal, therefore, is to define and study regular expressions for data words. As the automaton model, we take register automata, which are a natural analog of NFAs for data words. We first equip standard regular expressions with limited memory, and show that they capture the class of data words defined by register automata. The complexity of the main decision problems for these expressions (nonemptiness, membership) also turns out to be the same as for register automata. We then look at a subclass of these regular expressions that can define many properties of interest in applications of data words, and show that the main decision problems can be solved efficiently for it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Angles, R., Gutiérrez, C.: Survey of graph database models. ACM Comput. Surv. 40(1) (2008)

    Google Scholar 

  2. Barceló, P., Hurtado, C., Libkin, L., Wood, P.: Expressive languages for path queries over graph-structured data. In: PODS 2010, pp. 3–14 (2010)

    Google Scholar 

  3. Benedikt, M., Ley, C., Puppis, G.: Automata vs. Logics on Data Words. In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 110–124. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Bojanczyk, M., Parys, P.: XPath evaluation in linear time. In: PODS 2008, pp. 241–250 (2008)

    Google Scholar 

  5. Bojanczyk, M., David, C., Muscholl, A., Schwentick, T., Segoufin, L.: Two-variable logic on words with data. ACM TOCL 12(4) (2011)

    Google Scholar 

  6. Bojanczyk, M., Lasota, S.: An extension of data automata that captures XPath. In: LICS 2010, pp. 243–252 (2010)

    Google Scholar 

  7. Calvanese, D., de Giacomo, G., Lenzerini, M., Vardi, M.Y.: Rewriting of regular expressions and regular path queries. JCSS 64(3), 443–465 (2002)

    MATH  Google Scholar 

  8. Colcombet, T., Ley, C., Puppis, G.: On the Use of Guards for Logics with Data. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907, pp. 243–255. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Demri, S., Lazic, R.: LTL with the freeze quantifier and register automata. ACM TOCL 10(3) (2009)

    Google Scholar 

  10. Figueira, D.: Satisfiability of downward XPath with data equality tests. In: PODS 2009, pp. 197–206 (2009)

    Google Scholar 

  11. Glaister, I., Shallit, J.: A lower bound technique for the size of nondeterministic finite automata. IPL 59, 75–77 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Grumberg, O., Kupferman, O., Sheinvald, S.: Variable Automata over Infinite Alphabets. In: Dediu, A.-H., Fernau, H., Martín-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 561–572. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  13. Kaminski, M., Francez, N.: Finite memory automata. Theoretical Computer Science 134(2), 329–363 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kaminski, M., Tan, T.: Regular expressions for languages over infinite alphabets. Fundam. Inform. 69(3), 301–318 (2006)

    MathSciNet  MATH  Google Scholar 

  15. Libkin, L.: Logics for unranked trees: an overview. Logical Methods in Computer Science 2(3) (2006)

    Google Scholar 

  16. Libkin, L., Vrgoč, D.: Regular path queries on graphs with data. In: ICDT 2012 (to appear, 2012)

    Google Scholar 

  17. Marx, M.: Conditional XPath. ACM TODS 30, 929–959 (2005)

    Article  Google Scholar 

  18. Mendelzon, A.O., Wood, P.T.: Finding regular simple paths in graph databases. SIAM J. Comput. 24(6), 1235–1258 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Neven, F.: Automata theory for XML researchers. SIGMOD Record 31(3), 39–46 (2002)

    Article  Google Scholar 

  20. Neven, F., Schwentick, T., Vianu, V.: Finite state machines for strings over infinite alphabets. ACM TOCL 5(3), 403–435 (2004)

    Article  MathSciNet  Google Scholar 

  21. Sakamoto, H., Ikeda, D.: Intractability of decision problems for finite-memory automata. Theor. Comput. Sci. 231(2), 297–308 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Schwentick, T.: Automata for XML – A survey. JCSS 73(3), 289–315 (2007)

    MathSciNet  MATH  Google Scholar 

  23. Segoufin, L.: Automata and Logics for Words and Trees over an Infinite Alphabet. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 41–57. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  24. Sipser, M.: Introduction to the Theory of Computation. PWS Publishing (1997)

    Google Scholar 

  25. Tan, T.: Graph reachability and pebble automata over infinite alphabets. In: LICS 2009, pp. 157–166 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Libkin, L., Vrgoč, D. (2012). Regular Expressions for Data Words. In: Bjørner, N., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2012. Lecture Notes in Computer Science, vol 7180. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28717-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28717-6_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28716-9

  • Online ISBN: 978-3-642-28717-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics