[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Bayesian Painting by Numbers: Flexible Priors for Colour-Invariant Object Recognition

  • Chapter
Machine Learning for Computer Vision

Part of the book series: Studies in Computational Intelligence ((SCI,volume 411))

  • 5791 Accesses

Abstract

Generative models of images should take into account transformations of geometry and reflectance. Then, they can provide explanations of images that are factorized into intrinsic properties that are useful for subsequent tasks, such as object classification. It was previously shown how images and objects within images could be described as compositions of regions called structural elements or ‘stels’. In this way, transformations of the reflectance and illumination of object parts could be accounted for using a hidden variable that is used to ‘paint’ the same stel differently in different images. For example, the stel corresponding to the petals of a flower can be red in one image and yellow in another. Previous stel models have used a fixed number of stels per image and per image class. Here, we introduce a Bayesian stel model, the colour − invariant admixture (CIA) model, which can infer different numbers of stels for different object types, as appropriate. Results on Caltech101 images show that this method is capable of automatically selecting a number of stels that reflects the complexity of the object class and that these stels are useful for object recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. Journal of Machine Learning Research 3, 993–1022 (2003)

    MATH  Google Scholar 

  2. Canny, J.: A computational approach to edge detection. IEEE Transactions on Pattern Recognition and Machine Intelligence 8(6), 679–698 (1986)

    Article  Google Scholar 

  3. Cao, L., Li, F.-F.: Spatially coherent latent topic model for concurrent object segmentation and classification. In: Proceedings of the Eleventh IEEE International Conference on Computer Vision (2007)

    Google Scholar 

  4. Chang, C., Lin, C.: LIBSVM: a library for support vector machines (2001), http://www.csie.ntu.edu.tw/~cjlin/libsvm

  5. Erhan, D., Bengio, Y., Courville, A., Manzagol, P.-A., Vincent, P., Bengio, S.: Why does unsupervised pre-training help deep learning? Journal of Machine Learning Research 11, 625–660 (2010)

    MathSciNet  MATH  Google Scholar 

  6. Frey, B.J., Jojic, N.: Estimating mixture models of images and inferring spatial transformations using the EM algorithm. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 416–422 (1999)

    Google Scholar 

  7. Frey, B.J., Jojic, N.: Transformation-invariant clustering using the EM algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(1) (2003)

    Google Scholar 

  8. Grauman, K., Darrell, T.: The pyramid match kernel: Discriminative classification with sets of image features. In: Proceedings of the Tenth IEEE International Conference on Computer Vision, pp. 1458–1465 (2005)

    Google Scholar 

  9. Grenander, U.: Lectures in Pattern Theory I, II and III: Pattern Analysis, Pattern Synthesis and Regular Structures. Springer, Berlin (1976-1981)

    Google Scholar 

  10. Hinton, G.E.: Connectionist learning procedures. Artificial Intelligence 40, 185–234 (1989)

    Article  Google Scholar 

  11. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jojic, N., Caspi, Y.: Capturing image structure with probabilistic index maps. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 212–219 (2004)

    Google Scholar 

  13. Jojic, N., Frey, B.J.: Learning flexible sprites in video layers. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2001)

    Google Scholar 

  14. Jojic, N., Perina, A., Cristani, M., Murino, V., Frey, B.J.: Stel component analysis: Modeling spatial correlations in image class structure. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 2044–2051 (2009)

    Google Scholar 

  15. Jojic, N., Perina, A., Cristani, M., Murino, V., Frey, B.J.: Stel component analysis: Modeling spatial correlations in image class structure. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2044–2051 (2009)

    Google Scholar 

  16. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2169–2178 (2006)

    Google Scholar 

  17. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  18. Li, F.-F., Fergus, R., Perona, P.: Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories. In: Proceedings of the IEEE CVPR Workshop on Generative Model Based Vision, p. 178 (2004)

    Google Scholar 

  19. Lowe, D.: Object recognition from local scale-invariant features. In: Proceedings of the Seventh IEEE International Conference on Computer Vision (1999)

    Google Scholar 

  20. Marr, D.: Vision: A computational investigation into human representation and processing of visual information. W. H. Freeman and Company, San Franciso (1982)

    Google Scholar 

  21. Mumford, D.: Neuronal architectures for pattern-theoretic problems. In: Koch, C., Davis, J. (eds.) Large-Scale Theories of the Cortex, pp. 125–152. MIT Press, Cambridge (1994)

    Google Scholar 

  22. Murphy, K.P.: Conjugate Bayesian analysis of the Gaussian distribution. Technical report. University of British Columbia (2007)

    Google Scholar 

  23. Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 607–609 (1996)

    Article  Google Scholar 

  24. Perina, A., Jojic, N., Castellani, U., Cristani, M., Murino, V.: Object Recognition with Hierarchical Stel Models. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6316, pp. 15–28. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  25. Rifkin, R., Klautau, A.: In defense of one-vs-all classification. Journal of Machine Learning Research 5, 101–141 (2004)

    MathSciNet  MATH  Google Scholar 

  26. Russell, B.C., Torralba, A., Murphy, K.P., Freeman, W.T.: Labelme: a database and web-based tool for image annotation. International Journal of Computer Vision 77, 157–173 (2008)

    Article  Google Scholar 

  27. Serre, T., Oliva, A., Poggio, T.: A feedforward architecture accounts for rapid categorization. Proceedings of the National Academy of Sciences 104(15), 6424–6429 (2007)

    Article  Google Scholar 

  28. Sivic, J., Russell, B.C., Efros, A.A., Zisserman, A., Freeman, W.T.: Discovering objects and their locations in images. In: Proceedings of the Tenth IEEE International Conference on Computer Vision (2005)

    Google Scholar 

  29. Sudderth, E.B., Torralba, A., Freeman, W.T., Willsky, A.S.: Describing visual scenes using transformed object parts. International Journal of Computer Vision 77 (2008)

    Google Scholar 

  30. Teh, Y.W., Jordan, M.I., Beal, M.J., Blei, D.M.: Hierarchical Dirichlet processes. Journal of the American Statistical Association 101(476), 1566–1581 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhu, S.C., Mumford, D.: GRADE: Gibbs reaction and diffusion equations — a framework for pattern synthesis, image denoising, and removing clutter. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeroen C. Chua .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Chua, J.C., Givoni, I.E., Adams, R.P., Frey, B.J. (2013). Bayesian Painting by Numbers: Flexible Priors for Colour-Invariant Object Recognition. In: Cipolla, R., Battiato, S., Farinella, G. (eds) Machine Learning for Computer Vision. Studies in Computational Intelligence, vol 411. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28661-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28661-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28660-5

  • Online ISBN: 978-3-642-28661-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics