[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Multiple Instrument Mixtures Source Separation Evaluation Using Instrument-Dependent NMF Models

  • Conference paper
Latent Variable Analysis and Signal Separation (LVA/ICA 2012)

Abstract

This work makes use of instrument-dependent models to separate the different sources of multiple instrument mixtures. Three different models are applied: (a) basic spectral model with harmonic constraint, (b) source-filter model with harmonic-comb excitation and (c) source-filter model with multi-excitation per instrument. The parameters of the models are optimized by an augmented NMF algorithm and learnt in a training stage. The models are presented in [1], here the experimental setting for the application to source separation is explained. The instrument-dependent NMF models are first trained and then a test stage is performed. A comparison with other state-of-the-art software is presented. Results show that source-filter model with multi-excitation per instrument outperforms the other compared models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Carabias-Orti, J.J., Virtanen, T., Vera-Candeas, P., Ruiz-Reyes, N., Canadas-Quesada, F.J.: Musical Instrument Sound Multi-Excitation Model for Non-Negative Spectrogram Factorization. IEEE Journal on Selected Topics on Signal Processing 5(6), 1144–1158 (2011)

    Article  Google Scholar 

  2. Virtanen, T., Klapuri, A.: Analysis of polyphonic audio using source-filter model and non-negative matrix factorization. In: Advances in Models for Acoustic Processing, Neural Information Processing Systems Workshop (2006)

    Google Scholar 

  3. Heittola, T., Klapuri, A., Virtanen, T.: Musical instrument recognition in polyphonic audio using source-filter model for sound separation. In: Proc. 10th Int. Society for Music Information Retrieval Conf. (ISMIR), Kobe, Japan (2009)

    Google Scholar 

  4. Virtanen, T.: Monaural sound source separation by nonnegative matrix factorization with temporal continuity and sparseness criteria. IEEE Transactions on Audio, Speech, and Language Processing 15(3), 1066–1074 (2007)

    Article  Google Scholar 

  5. Goto, M.: Development of the RWC Music Database. In: Proc. of the 18th International Congress on Acoustics (ICA 2004), pp.I-553–I-556 (April 2004) (invited paper)

    Google Scholar 

  6. Mirex 2007: Music information retrieval evaluation exchange, http://www.music-ir.org/mirex/wiki/2007:MIREX_HOME

  7. Vincent, E., Bertin, N., Badeau, R.: Adaptive Harmonic Spectral Decomposition for Multiple Pitch Estimation. IEEE Transactions on Audio, Speech, and Language Processing 18(3), 528–537 (2010)

    Article  Google Scholar 

  8. Ruiz-Reyes, N., Vera-Candeas, P.: Adaptive Signal Modeling Based on Sparse Approximations for Scalable Parametric Audio Coding. IEEE Transactions on Audio, Speech, and Language Processing 18(3), 447–460 (2010)

    Article  Google Scholar 

  9. Every, M.R., Szymanski, J.E.: Separation of synchronous pitched notes by spectral filtering of harmonics. IEEE Trans. Audio, Speech, Lang. Process. 14(5), 1845–1856 (2006)

    Article  Google Scholar 

  10. Ozerov, A., Vincent, E.: A general flexible framework for the handling of prior information in audio source separation. IEEE Trans. Audio, Speech, Lang. Process (to appear)

    Google Scholar 

  11. Vincent, E.: Musical source separation using time-frequency source priors. IEEE Transactions on Audio, Speech, and Language Processing 14(1), 91–98 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Fabian Theis Andrzej Cichocki Arie Yeredor Michael Zibulevsky

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rodriguez-Serrano, F.J., Carabias-Orti, J.J., Vera-Candeas, P., Virtanen, T., Ruiz-Reyes, N. (2012). Multiple Instrument Mixtures Source Separation Evaluation Using Instrument-Dependent NMF Models. In: Theis, F., Cichocki, A., Yeredor, A., Zibulevsky, M. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2012. Lecture Notes in Computer Science, vol 7191. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28551-6_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28551-6_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28550-9

  • Online ISBN: 978-3-642-28551-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics