Abstract
This paper presents a novel method for underdetermined acoustic source separation of convolutive mixtures. Multiple complex-valued Independent Component Analysis adaptations jointly estimate the mixing matrix and the temporal activities of multiple sources in each frequency. A structure based on a recursive temporal weighting of the gradient enforces each ICA adaptation to estimate mixing parameters related to sources having a disjoint temporal activity. Permutation problem is reduced imposing a multiresolution spatio-temporal correlation of the narrow-band components. Finally, aligned mixing parameters are used to recover the sources through L 0-norm minimization and a post-processing based on a single channel Wiener filtering. Promising results obtained over a public dataset show that the proposed method is an effective solution to the underdetermined source separation problem.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Christensen, H., Barker, J., Ma, N., Green, P.: The chime corpus: a resource and a challenge for computational hearing in multisource environments. In: Proceedings of Interspeech, Makuhari, Japan (2010)
Duong, N.Q.K., Vincent, E., Gribonval, R.: Under-determined convolutive blind source separation using spatial covariance models. In: Proc. ICASSP (2010)
Araki, S., Nakatani, T., Sawada, H., Makino, S.: Stereo Source Separation and Source Counting with MAP Estimation with Dirichlet Prior Considering Spatial Aliasing Problem. In: Adali, T., Jutten, C., Romano, J.M.T., Barros, A.K. (eds.) ICA 2009. LNCS, vol. 5441, pp. 742–750. Springer, Heidelberg (2009)
Sawada, H., Araki, S., Mukai, R., Makino, S.: Blind extraction of dominant target sources using ICA and time-frequency masking. IEEE Trans. on Audio, Speech, and Language Processing 14(6), 2165–2173 (2006)
Ozerov, A., Fevotte, C.: Multichannel nonnegative matrix factorization in convolutive mixtures for audio source separation. IEEE Trans. on Audio, Speech and Language Processing 18(3), 550–563 (2010)
Nesta, F., Matassoni, M.: Robust automatic speech recognition through on-line semi-blind source extraction. In: Proceedings of CHIME, Florence, Italy (2011)
Vincent, E.: Complex Nonconvex l p Norm Minimization for Underdetermined Source Separation. In: Davies, M.E., James, C.J., Abdallah, S.A., Plumbley, M.D. (eds.) ICA 2007. LNCS, vol. 4666, pp. 430–437. Springer, Heidelberg (2007)
Takahashi, Y., Takatani, T., Osako, K., Saruwatari, H., Shikano, K.: Blind spatial subtraction array for speech enhancement in noisy environment. IEEE Trans. on Audio, Speech and Language Processing 17(4), 650–664 (2009)
Cichocki, A., Amari, S.-I.: Adaptive Blind Signal and Image Processing: Learning Algorithms and Applications. John Wiley & Sons, Inc., New York (2002)
Nesta, F., Svaizer, P., Omologo, M.: Convolutive BSS of short mixtures by ICA recursively regularized across frequencies. IEEE Transactions on Audio, Speech, and Language Processing 19(3), 624–639 (2011)
Nesta, F., Omologo, M.: Cooperative wiener-ICA for source localization and separation by distributed microphone arrays. In: Proc. of ICASSP (March 2010)
Nesta, F., Omologo, M.: Generalized state coherence transform for multidimensional TDOA estimation of multiple sources. IEEE Transactions on Audio, Speech, and Language Processing (2011)
Nesta, F., Omologo, M.: Enhanced multidimensional spatial functions for unambiguous localization of multiple sparse acoustic sources. In: Proc. of ICASSP, Kyoto, Japan (to appear, 2012)
Araki, S., Nesta, F., Vincent, E., Koldovsky, Z., Nolte, G., Ziehe, A., Benichoux, A.: The 2011 Signal Separation Evaluation Campaign (SiSEC2011):-Audio Source Separation. In: Theis, F., et al. (eds.) LVA/ICA 2012. LNCS, vol. 7191, pp. 414–422. Springer, Heidelberg (2012)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Nesta, F., Omologo, M. (2012). Convolutive Underdetermined Source Separation through Weighted Interleaved ICA and Spatio-temporal Source Correlation. In: Theis, F., Cichocki, A., Yeredor, A., Zibulevsky, M. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2012. Lecture Notes in Computer Science, vol 7191. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28551-6_28
Download citation
DOI: https://doi.org/10.1007/978-3-642-28551-6_28
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-28550-9
Online ISBN: 978-3-642-28551-6
eBook Packages: Computer ScienceComputer Science (R0)