[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Convolutive Underdetermined Source Separation through Weighted Interleaved ICA and Spatio-temporal Source Correlation

  • Conference paper
Latent Variable Analysis and Signal Separation (LVA/ICA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7191))

Abstract

This paper presents a novel method for underdetermined acoustic source separation of convolutive mixtures. Multiple complex-valued Independent Component Analysis adaptations jointly estimate the mixing matrix and the temporal activities of multiple sources in each frequency. A structure based on a recursive temporal weighting of the gradient enforces each ICA adaptation to estimate mixing parameters related to sources having a disjoint temporal activity. Permutation problem is reduced imposing a multiresolution spatio-temporal correlation of the narrow-band components. Finally, aligned mixing parameters are used to recover the sources through L 0-norm minimization and a post-processing based on a single channel Wiener filtering. Promising results obtained over a public dataset show that the proposed method is an effective solution to the underdetermined source separation problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Christensen, H., Barker, J., Ma, N., Green, P.: The chime corpus: a resource and a challenge for computational hearing in multisource environments. In: Proceedings of Interspeech, Makuhari, Japan (2010)

    Google Scholar 

  2. Duong, N.Q.K., Vincent, E., Gribonval, R.: Under-determined convolutive blind source separation using spatial covariance models. In: Proc. ICASSP (2010)

    Google Scholar 

  3. Araki, S., Nakatani, T., Sawada, H., Makino, S.: Stereo Source Separation and Source Counting with MAP Estimation with Dirichlet Prior Considering Spatial Aliasing Problem. In: Adali, T., Jutten, C., Romano, J.M.T., Barros, A.K. (eds.) ICA 2009. LNCS, vol. 5441, pp. 742–750. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  4. Sawada, H., Araki, S., Mukai, R., Makino, S.: Blind extraction of dominant target sources using ICA and time-frequency masking. IEEE Trans. on Audio, Speech, and Language Processing 14(6), 2165–2173 (2006)

    Article  Google Scholar 

  5. Ozerov, A., Fevotte, C.: Multichannel nonnegative matrix factorization in convolutive mixtures for audio source separation. IEEE Trans. on Audio, Speech and Language Processing 18(3), 550–563 (2010)

    Article  Google Scholar 

  6. Nesta, F., Matassoni, M.: Robust automatic speech recognition through on-line semi-blind source extraction. In: Proceedings of CHIME, Florence, Italy (2011)

    Google Scholar 

  7. Vincent, E.: Complex Nonconvex l p Norm Minimization for Underdetermined Source Separation. In: Davies, M.E., James, C.J., Abdallah, S.A., Plumbley, M.D. (eds.) ICA 2007. LNCS, vol. 4666, pp. 430–437. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Takahashi, Y., Takatani, T., Osako, K., Saruwatari, H., Shikano, K.: Blind spatial subtraction array for speech enhancement in noisy environment. IEEE Trans. on Audio, Speech and Language Processing 17(4), 650–664 (2009)

    Article  Google Scholar 

  9. Cichocki, A., Amari, S.-I.: Adaptive Blind Signal and Image Processing: Learning Algorithms and Applications. John Wiley & Sons, Inc., New York (2002)

    Book  Google Scholar 

  10. Nesta, F., Svaizer, P., Omologo, M.: Convolutive BSS of short mixtures by ICA recursively regularized across frequencies. IEEE Transactions on Audio, Speech, and Language Processing 19(3), 624–639 (2011)

    Article  Google Scholar 

  11. Nesta, F., Omologo, M.: Cooperative wiener-ICA for source localization and separation by distributed microphone arrays. In: Proc. of ICASSP (March 2010)

    Google Scholar 

  12. Nesta, F., Omologo, M.: Generalized state coherence transform for multidimensional TDOA estimation of multiple sources. IEEE Transactions on Audio, Speech, and Language Processing (2011)

    Google Scholar 

  13. Nesta, F., Omologo, M.: Enhanced multidimensional spatial functions for unambiguous localization of multiple sparse acoustic sources. In: Proc. of ICASSP, Kyoto, Japan (to appear, 2012)

    Google Scholar 

  14. Araki, S., Nesta, F., Vincent, E., Koldovsky, Z., Nolte, G., Ziehe, A., Benichoux, A.: The 2011 Signal Separation Evaluation Campaign (SiSEC2011):-Audio Source Separation. In: Theis, F., et al. (eds.) LVA/ICA 2012. LNCS, vol. 7191, pp. 414–422. Springer, Heidelberg (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Fabian Theis Andrzej Cichocki Arie Yeredor Michael Zibulevsky

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nesta, F., Omologo, M. (2012). Convolutive Underdetermined Source Separation through Weighted Interleaved ICA and Spatio-temporal Source Correlation. In: Theis, F., Cichocki, A., Yeredor, A., Zibulevsky, M. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2012. Lecture Notes in Computer Science, vol 7191. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28551-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28551-6_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28550-9

  • Online ISBN: 978-3-642-28551-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics