[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Computer–Aided Diagnosis of Pigmented Skin Dermoscopic Images

  • Conference paper
Medical Content-Based Retrieval for Clinical Decision Support (MCBR-CDS 2011)

Abstract

Diagnosis of benign and malign skin lesions is currently mostly relying on visual assessment and frequent biopsies performed by dermatologists. As the timely and correct diagnosis of these skin lesions is one of the most important factors in the therapeutic outcome, leveraging new technologies to assist the dermatologist seems natural. In this paper we propose a machine learning approach to classify melanocytic lesions into malignant and benign from dermoscopic images. The dermoscopic image database is composed of 4240 benign lesions and 232 malignant melanoma. For segmentation we are using multiphase soft segmentation with total variation and H 1 regularization. Then, each lesion is characterized by a feature vector that contains shape, color and texture information, as well as local and global parameters that try to reflect structures used in medical diagnosis. The learning and classification stage is performed using SVM with polynomial kernels. The classification delivered accuracy of 98.57% with a true positive rate of 0.991% and a false positive rate of 0.019%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Marks, R.: Epidemiology of melanoma. Clin. Exp. Dermatol. 25, 459–463 (2000)

    Article  Google Scholar 

  2. World Health Organization, Ultraviolet Radiation and the Intersun Programme (2007), http://www.who.int/uv/faq/skincancer/en/

  3. Pariser, R.J., Pariser, D.M.: Primary care physicians errors in handling cutaneous disorders. J. Amer. Acad. Dermatol. 17, 239–245 (1987)

    Article  Google Scholar 

  4. Carli, P., De Giorgi, V., Gianotti, B., et al.: Dermatoscopy and early diagnosis of melanoma. Arch Dermotal. 137, 1641–1644 (2001)

    Google Scholar 

  5. http://www.dermogenius.com , http://www.dermogenius.com

  6. Rubegni, P., Burroni, M., Dell’eva, G., Andreassi, L.: Digital dermoscopy analysis for automated diagnosis of pigmented skin lesion. Clinics in Dermatology 20(3), 309–312 (2002)

    Article  Google Scholar 

  7. Nachbar, F., Stolz, W., Merkle, T., Cognetta, A., Vogt, T., Landthaler, M., Bilek, P., Braun-Falco, O., Plewig, G.: The ABCD rule of dermatoscopy: high prospective value in the diagnosis of doubtful melanocytic skin lesions. Journal of the American Academy of Dermatology 30(4), 551–559 (1994)

    Article  Google Scholar 

  8. Lorentzen, H., Weismann, K., Kenet, R., Secher, L., Larsen, F.: Comparison of dermatoscopic abcd rule and risk stratification in the diagnosis of malignant melanoma. Acta Derm Venereol 80(2), 122–126 (2000)

    Google Scholar 

  9. Johr, R.H.: Dermoscopy: alternative melanocytic algorithms - the abcd rule of dermatoscopy, menzies scoring method, and 7–point checklist. Clinics in Dermatology 20(3), 240–247 (2002)

    Article  Google Scholar 

  10. Schmid-Saugeon, P., Guillod, J., Thiran, J.-P.: Towards a Computer–aided diagnosis System for Pigmented Skin Lesions, Comp. Med. Imag. Graphics, pp. 65–78 (2003)

    Google Scholar 

  11. Hall, P.N., Claridge, E., Smith, J.D.: Computer Screening for Early Detection of Melanoma: Is there a Future? British J. Dermatol. 132, 325–328 (1995)

    Article  Google Scholar 

  12. Grzymala-Busse, P., Grzymala-Busse, J.W., Hippe, Z.S.: Melanoma prediction using data mining system LERS. pp. 615–620 (2001)

    Google Scholar 

  13. Cascinelli, N., Ferrario, M., Tonelli, T., Leo, E.: A possible new tool for clinical diagnosis of melanoma: The computer. Journal of the American Academy of Dermatology 16(2), 361–367 (1987)

    Article  Google Scholar 

  14. Ganster, H., Pinz, A., Rhrer, R., Wildling, E., Binder, M., Kittler, H.: Automated melanoma recognition. IEEE Transactions on Medical Imaging vol 20, 233–239 (2001)

    Article  Google Scholar 

  15. Capdehourat, G., Corez, A., Bazzano, A., Muse, P.: Pigmented Skin Lesions Classification Using Dermatoscopic Images (2009) ISBN: 978-3-642-10267-7

    Google Scholar 

  16. Celebi, M.E., Kingravi, H.A., Uddin, B., Iyatomi, H., Aslandogan, Y.A., Stoecker, W.V., Moss, R.H.: A methodological approach to the classification of dermoscopy images. Comput. Med. Imaging Graph 31(6), 362–373 (2007)

    Article  Google Scholar 

  17. Robnik-Sikonja, M., Kononenko, I.: Theoretical and empirical analysis of relieff and rrelieff. Mach. Learn. 53(1-2), 23–69 (2003)

    Article  MATH  Google Scholar 

  18. Hall, M.A.: Correlation–based feature selection for discrete and numeric class machine learning, pp. 359–366 (2000)

    Google Scholar 

  19. Schlkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization and Beyond. The MIT Press, Cambridge (2001)

    Google Scholar 

  20. Li, F., Shen, C., Li, C.: Multiphase Soft Segmentation with Total Variation and H1 Regularization. Journal of Mathematical Imaging and Vision 37(2), 98–111 (2010)

    Article  Google Scholar 

  21. Cristianini, N., Shawe–Taylor, J.: An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press (2000) ISBN:0521780195

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Safi, A. et al. (2012). Computer–Aided Diagnosis of Pigmented Skin Dermoscopic Images. In: Müller, H., Greenspan, H., Syeda-Mahmood, T. (eds) Medical Content-Based Retrieval for Clinical Decision Support. MCBR-CDS 2011. Lecture Notes in Computer Science, vol 7075. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28460-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28460-1_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28459-5

  • Online ISBN: 978-3-642-28460-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics