[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

On the Approximation Ratio of the Path Matching Christofides Algorithm

  • Conference paper
SOFSEM 2012: Theory and Practice of Computer Science (SOFSEM 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7147))

  • 2322 Accesses

Abstract

The traveling salesman problem (TSP) is one of the most fundamental optimization problems. We consider the β-metric traveling salesman problem (Δ β -TSP), i.e., the TSP restricted to graphs satisfying the β-triangle inequality c({v,w}) ≤ β(c({v,u}) + c(u,w})), for some cost function c and any three vertices u,v,w. The well-known path matching Christofides algorithm (PMCA) guarantees an approximation ratio of \(\frac{3}{2}\beta^2\) and is the best known algorithm for the Δ β -TSP, for 1 ≤ β ≤ 2. We provide a complete analysis of the algorithm. First, we correct an error in the original implementation that may produce an invalid solution. Using a worst-case example, we then show that the algorithm cannot guarantee a better approximation ratio. The example can be reused for the PMCA variants for the Hamiltonian path problem with zero and one prespecified endpoints. For two prespecified endpoints, we cannot reuse the example, but we construct another worst-case example to show the optimality of the analysis also in this case.

This work was partially supported by SNF grant No. 200021-132510/1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Andreae, T.: On the Traveling Salesman Problem Restricted to Inputs Satisfying a Relaxed Triangle Inequality. Networks 38, 59–67 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bender, M.A., Chekuri, C.: Performance guarantees for the TSP with a parameterized triangle inequality. Inf. Proc. Letters 73, 17–21 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Böckenhauer, H.-J., Hromkovič, J.: Stability of approximation algorithms or parameterization of the approximation ratio. In: Proceedings of the 9th International Symposium on Operations Research in Slovenia, pp. 23–28 (2007)

    Google Scholar 

  4. Böckenhauer, H.-J., Hromkovič, J., Klasing, R., Seibert, S., Unger, W.: Towards the notion of stability of approximation for hard optimization tasks and the traveling salesman problem. Theoretical Computer Science 285, 3–24 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Böckenhauer, H.-J., Hromkovič, J., Seibert, S.: Stability of Approximation. In: Gonzalez, T.F. (ed.) Handbook of Approximation Algorithms and Metaheuristics. Chapman & Hall, Boca Raton (2007)

    Google Scholar 

  6. Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical Report 388. Carnegie Mellon University, Graduate School of Industrial Administration (1976)

    Google Scholar 

  7. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  8. Forlizzi, L., Hromkovič, J., Proietti, G., Seibert, S.: On the Stability of Approximation for Hamiltonian Path Problems. Alg. Oper. Res. 1, 31–45 (2006)

    MathSciNet  MATH  Google Scholar 

  9. Goodaire, E.G., Parmenter, M.M.: Discrete Mathematics with Graph Theory. Prentice Hall, Upper Saddle River (2005)

    MATH  Google Scholar 

  10. Hoogeveen, J.A.: Analysis of Christofides’ heuristic: Some paths are more difficult than cycles. Oper. Res. Letters 10, 291–295 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hromkovič, J.: Algorithmics for Hard Problems. Introduction to Combinatorial Optimization, Randomization, Approximation, and Heuristics. Springer, Heidelberg (2004)

    Google Scholar 

  12. Krug, S.: Analysis of Approximation Algorithms for the Traveling Salesman Problem in Near-Metric Graphs. Master’s thesis, ETH Zurich, Department of Computer Science (2011)

    Google Scholar 

  13. Mömke, T.: Structural Properties of Hard Metric TSP Inputs. In: Černá, I., Gyimóthy, T., Hromkovič, J., Jefferey, K.G., Králović, R., Vukolić, M., Wolf, S. (eds.) SOFSEM 2011. LNCS, vol. 6543, pp. 394–405. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Krug, S. (2012). On the Approximation Ratio of the Path Matching Christofides Algorithm. In: Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds) SOFSEM 2012: Theory and Practice of Computer Science. SOFSEM 2012. Lecture Notes in Computer Science, vol 7147. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27660-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27660-6_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27659-0

  • Online ISBN: 978-3-642-27660-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics