[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Limit Theorems and Converse Comparison Theorems for Generators of BSDEs

  • Conference paper
Information Computing and Applications (ICICA 2011)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 244))

Included in the following conference series:

  • 1575 Accesses

Abstract

In this paper, we establishes a limit theorem of backward stochastic differential equations (BSDEs) where the coefficient is independent of y and uniformly continuous in z. With this limit theorem, some converse comparison theorems of this kind of BSDEs are established.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Briand, P., Coquet, F., Hu, Y., Mémin, J., Peng, S.: A converse comparison theorem for BSDEs and related properties of g-expectation. Electron. Comm. Probab. 5, 101–117 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Coquet, F., Hu, Y., Mémin, J., Peng, S.: A general converse comparison theorem for backward stochastic differential equations. C. R. Acad. Sci. Paris, Série I 333, 577–581 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Fan, S.-J., Hu, J.-H.: A limit theorem for solutions to BSDEs in the space of processes Statist. Probab. Lett. 56, 93–100 (2008)

    MathSciNet  Google Scholar 

  4. Jiang, L.: Converse comparison theorems for backward stochastic differential equations. Statist. Probab. Lett. 71, 173–183 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Jiang, L.: Nonlinear expectation g-expectation theory and its applications in finance Ph.D Thesis. ShanDong University, China (2008)

    Google Scholar 

  6. Jia, G.: A uniqueness theorem for the solution of Backward Stochastic Differential Equations. C. R. Acad. Sci. Paris, Ser. I 346, 439–444 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Lepeltier, J.P., Martin, J.S.: Backward stochastic differential equations with continuous coefficient Statist. Probab. Lett. 32, 425–430 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Liu, Y., Jiang, L., Xu, Y.: A local limit theorem for solutions of BSDEs with Mao’ non-Lipschitz generator. Acta Math. Appli. Sinica, English Series 24, 329–336 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Liu, J., Ren, J.: Comparison theorem for solutions of backward stochastic differential equations with continuous coeffcient. Statist. Probab. Lett. 56, 93–100 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Pardoux, E., Peng, S.: Adapted solution of a backward stochastic differential equation. Systems Control Lett. 14, 55–61 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Peng, S.: Backward SDE and related g-expectation. In: Backward Stochastic Differential Equations Pitman Res. Notes Math. Ser., vol. 364, pp. 141–159 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zheng, S., He, Y., Yang, A., Guo, X., Wang, L. (2011). Limit Theorems and Converse Comparison Theorems for Generators of BSDEs. In: Liu, C., Chang, J., Yang, A. (eds) Information Computing and Applications. ICICA 2011. Communications in Computer and Information Science, vol 244. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27452-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27452-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27451-0

  • Online ISBN: 978-3-642-27452-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics