Abstract
The store, carry, and forward paradigm of the Delay- Tolerant Network (DTN) architecture enables a node to carry messages for a long period of time. This long-term storage is supported by the DTN architecture with the usage of persistent storage; however to the best of our knowledge, the routing/scheduling framework that incorporates support for persistent storage has not been addressed much in the DTN literature. In this paper, we investigate the impact of persistent storage on the routing performance over different buffer scheduling policies. Our extensive simulation studies demonstrate that they exhibit an improvement in delivery ratio, but with a compromise on delivery delay. This shows the pressing need for a new scheduling policy to tap the complete potential of the persistent storage. To this end, we propose a Time in Primary Scheduling (TiPS) policy with two variants (one using local information and the other using global information) that outperforms the contemporary buffer scheduling policies with respect to the persistent storage framework.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cisco and intel: Collaborative 802.11n leadership and testing, www.cisco.com/en/US/solutions/collateral/ns340/ns394/ns348/ns767/white_paper_c11-492743_v1.pdf
Microsd card performance test results, http://www.sakoman.com/OMAP/microsd-card-perfomance-test-results.html
Bettstetter, C., Hartenstein, H., Pérez-Costa, X.: Stochastic Properties of the Random Waypoint Mobility Model. Wireless Networks 10, 555–567 (2004)
Cerf, V., Burleigh, S., Hooke, A., Torgerson, L., Durst, R., Scott, K., Fall, K., Weiss, H.: RFC 4838, Delay-Tolerant Networking Architecture. IRTF DTN Research Group (2007)
Chuah, M.C., Ma, W.B.: Integrated Buffer and Route Management in a DTN with Message Ferry. In: MILCOM 2006: Proceedings of the IEEE Conference on Military Communications, pp. 1–7 (2006)
Dimitriou, S., Tsaoussidis, V.: Effective Buffer and Storage Management in DTN Nodes. In: ICUMT 2009: Proceedings of the International Conference on Telecommunications, pp. 1–3 (2009)
Fall, K.: A Delay-Tolerant Network Architecture for Challenged Internets. In: SIGCOMM 2003: Proceedings of the Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications, pp. 27–34 (2003)
Krifa, A., Barakat, C., Spyropoulos, T.: An Optimal Joint Scheduling and Drop Policy for Delay Tolerant Networks. In: WoWMoM 2008: Proceedings of the International Symposium on World of Wireless, Mobile, and Multimedia Networks, pp. 1–6 (2008)
Seligman, M., Fall, K., Mundur, P.: Storage Routing for DTN Congestion Control: Research Articles. Wireless Communications and Mobile Computing 7, 1183–1196 (2007)
Spyropoulos, T., Psounis, K., Raghavendra, C.S.: Spray and Wait: An Efficient Routing Scheme for Intermittently Connected Mobile Networks. In: WDTN 2005: Proceedings of the ACM SIGCOMM Workshop on Delay-Tolerant Networking, pp. 252–259 (2005)
Vahdat, A., Becker, D.: Epidemic Routing for Partially Connected Ad hoc Networks. Tech. Rep. CS-2000-06, Duke University (2000)
Xu, B., Wolfson, O., Naiman, C.: Machine Learning in Disruption-Tolerant MANETs. ACM Transactions on Autonomous and Adaptive Systems 4(4), 1–36 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mahendran, V., Praveen, T., Murthy, C.S.R. (2012). Impact of Persistent Storage on the DTN Routing Performance. In: Bononi, L., Datta, A.K., Devismes, S., Misra, A. (eds) Distributed Computing and Networking. ICDCN 2012. Lecture Notes in Computer Science, vol 7129. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25959-3_38
Download citation
DOI: https://doi.org/10.1007/978-3-642-25959-3_38
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-25958-6
Online ISBN: 978-3-642-25959-3
eBook Packages: Computer ScienceComputer Science (R0)