Abstract
The path-distance-width of a graph measures how close the graph is to a path. We consider the problem of determining the path-distance-width for graphs with chain-like structures such as k-cocomparability graphs, AT-free graphs, and interval graphs. We first show that the problem is NP-hard even for a very restricted subclass of AT-free graphs. Next we present simple approximation algorithms with constant approximation ratios for graphs with chain-like structures. For instance, our algorithm for AT-free graphs has approximation factor 3 and runs in linear time. We also show that the problem is solvable in polynomial time for the class of cochain graphs, which is a subclass of the class of proper interval graphs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Blache, G., Karpinski, M., Wirtgen, J.: On approximation intractability of the bandwidth problem, ECCC TR98-014 (1998)
Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. SIAM (1999)
Chang, J.M., Ho, C.W., Ko, M.T.: Powers of asteroidal triple-free graphs with applications. Ars Combin. 67, 161–173 (2003)
Corneil, D.G., Kim, H., Natarajan, S., Olariu, S., Sprague, A.P.: Simple linear time recognition of unit interval graphs. Inform. Process. Lett. 55, 99–104 (1995)
Corneil, D.G., Olariu, S., Stewart, L.: Asteroidal triple-free graphs. SIAM J. Discrete Math. 10, 399–430 (1997)
Corneil, D.G., Olariu, S., Stewart, L.: Linear time algorithms for dominating pairs in asteroidal triple-free graphs. SIAM J. Comput. 28, 1284–1297 (1999)
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman (1979)
Golovach, P., Heggernes, P., Kratsch, D., Lokshtanov, D., Meister, D., Saurabh, S.: Bandwidth on AT-Free Graphs. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 573–582. Springer, Heidelberg (2009)
Heggernes, P., Kratsch, D.: Linear-time certifying recognition algorithms and forbidden induced subgraphs. Nordic J. Comput. 14, 87–108 (2007)
Johnson, D.S.: The NP-completeness column: An ongoing guide. J. Algorithms 6, 434–451 (1985)
Kaplan, H., Shamir, R.: Pathwidth, bandwidth, and completion problems to proper interval graphs with small cliques. SIAM J. Comput. 25, 540–561 (1996)
Kleitman, D.J., Vohra, R.V.: Computing the bandwidth of interval graphs. SIAM J. Discrete Math. 3, 373–375 (1990)
Kloks, T., Kratsch, D., Müller, H.: Approximating the bandwidth for asteroidal triple-free graphs. J. Algorithms 32, 41–57 (1999)
Kobayashi, Y.: Private communication (September 2010)
Mahesh, R., Rangan, C.P., Srinivasan, A.: On finding the minimum bandwidth of interval graphs. Inform. and Comput. 95, 218–224 (1991)
Parra, A., Scheffler, P.: Characterizations and algorithmic applications of chordal graph embeddings. Discrete Appl. Math. 79, 171–188 (1997)
Sprague, A.P.: An O( n logn ) algorithm for bandwidth of interval graphs. SIAM J. Discrete Math. 7, 213–220 (1994)
Yamazaki, K.: On approximation intractability of the path-distance-width problem. Discrete Appl. Math. 110, 317–325 (2001)
Yamazaki, K., Bodlaender, H.L., de Fuiter, B., Thilikos, D.M.: Isomorphism for graphs of bounded distance width. Algorithmica 24, 105–127 (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Otachi, Y. et al. (2011). Approximability of the Path-Distance-Width for AT-free Graphs. In: Kolman, P., Kratochvíl, J. (eds) Graph-Theoretic Concepts in Computer Science. WG 2011. Lecture Notes in Computer Science, vol 6986. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25870-1_25
Download citation
DOI: https://doi.org/10.1007/978-3-642-25870-1_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-25869-5
Online ISBN: 978-3-642-25870-1
eBook Packages: Computer ScienceComputer Science (R0)