[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Approximability of the Path-Distance-Width for AT-free Graphs

  • Conference paper
Graph-Theoretic Concepts in Computer Science (WG 2011)

Abstract

The path-distance-width of a graph measures how close the graph is to a path. We consider the problem of determining the path-distance-width for graphs with chain-like structures such as k-cocomparability graphs, AT-free graphs, and interval graphs. We first show that the problem is NP-hard even for a very restricted subclass of AT-free graphs. Next we present simple approximation algorithms with constant approximation ratios for graphs with chain-like structures. For instance, our algorithm for AT-free graphs has approximation factor 3 and runs in linear time. We also show that the problem is solvable in polynomial time for the class of cochain graphs, which is a subclass of the class of proper interval graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Blache, G., Karpinski, M., Wirtgen, J.: On approximation intractability of the bandwidth problem, ECCC TR98-014 (1998)

    Google Scholar 

  2. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. SIAM (1999)

    Google Scholar 

  3. Chang, J.M., Ho, C.W., Ko, M.T.: Powers of asteroidal triple-free graphs with applications. Ars Combin. 67, 161–173 (2003)

    MathSciNet  MATH  Google Scholar 

  4. Corneil, D.G., Kim, H., Natarajan, S., Olariu, S., Sprague, A.P.: Simple linear time recognition of unit interval graphs. Inform. Process. Lett. 55, 99–104 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Corneil, D.G., Olariu, S., Stewart, L.: Asteroidal triple-free graphs. SIAM J. Discrete Math. 10, 399–430 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Corneil, D.G., Olariu, S., Stewart, L.: Linear time algorithms for dominating pairs in asteroidal triple-free graphs. SIAM J. Comput. 28, 1284–1297 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman (1979)

    Google Scholar 

  8. Golovach, P., Heggernes, P., Kratsch, D., Lokshtanov, D., Meister, D., Saurabh, S.: Bandwidth on AT-Free Graphs. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 573–582. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Heggernes, P., Kratsch, D.: Linear-time certifying recognition algorithms and forbidden induced subgraphs. Nordic J. Comput. 14, 87–108 (2007)

    MathSciNet  MATH  Google Scholar 

  10. Johnson, D.S.: The NP-completeness column: An ongoing guide. J. Algorithms 6, 434–451 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kaplan, H., Shamir, R.: Pathwidth, bandwidth, and completion problems to proper interval graphs with small cliques. SIAM J. Comput. 25, 540–561 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kleitman, D.J., Vohra, R.V.: Computing the bandwidth of interval graphs. SIAM J. Discrete Math. 3, 373–375 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kloks, T., Kratsch, D., Müller, H.: Approximating the bandwidth for asteroidal triple-free graphs. J. Algorithms 32, 41–57 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kobayashi, Y.: Private communication (September 2010)

    Google Scholar 

  15. Mahesh, R., Rangan, C.P., Srinivasan, A.: On finding the minimum bandwidth of interval graphs. Inform. and Comput. 95, 218–224 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  16. Parra, A., Scheffler, P.: Characterizations and algorithmic applications of chordal graph embeddings. Discrete Appl. Math. 79, 171–188 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sprague, A.P.: An O( n logn ) algorithm for bandwidth of interval graphs. SIAM J. Discrete Math. 7, 213–220 (1994)

    Article  MATH  Google Scholar 

  18. Yamazaki, K.: On approximation intractability of the path-distance-width problem. Discrete Appl. Math. 110, 317–325 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Yamazaki, K., Bodlaender, H.L., de Fuiter, B., Thilikos, D.M.: Isomorphism for graphs of bounded distance width. Algorithmica 24, 105–127 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Otachi, Y. et al. (2011). Approximability of the Path-Distance-Width for AT-free Graphs. In: Kolman, P., Kratochvíl, J. (eds) Graph-Theoretic Concepts in Computer Science. WG 2011. Lecture Notes in Computer Science, vol 6986. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25870-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25870-1_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25869-5

  • Online ISBN: 978-3-642-25870-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics