[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Important Separators and Parameterized Algorithms

  • Conference paper
Graph-Theoretic Concepts in Computer Science (WG 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6986))

Included in the following conference series:

Abstract

The notion of “important separators” and bounding the number of such separators turned out to be a very useful technique in the design of fixed-parameter tractable algorithms for multi(way) cut problems. For example, the recent breakthrough result of Chen et al.[3] on the Directed Feedback Vertex Set problem can be also explained using this notion. In my talk, I will overview combinatorial and algorithmic results that can be obtained by studying such separators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bousquet, N., Daligault, J., Thomassé, S.: Multicut is FPT. In: Proceedings of the 43rd ACM Symposium on Theory of Computing, pp. 459–468 (2011)

    Google Scholar 

  2. Chen, J., Liu, Y., Lu, S.: An Improved Parameterized Algorithm for the Minimum Node Multiway Cut Problem. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS, vol. 4619, pp. 495–506. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Chen, J., Liu, Y., Lu, S., O’Sullivan, B., Razgon, I.: A fixed-parameter algorithm for the directed feedback vertex set problem. J. ACM 55(5) (2008)

    Google Scholar 

  4. Chitnis, R., Hajiaghayi, M., Marx, D.: Fixed-parameter tractability of directed multiway cut parameterized by the size of the cutset. Accepted to SODA (2012)

    Google Scholar 

  5. Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.: On multiway cut parameterized above lower bounds. Accepted to IPEC (2011)

    Google Scholar 

  6. Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.: The complexity of multiterminal cuts. SIAM J. Comput. 23(4), 864–894 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Science. Springer, New York (1999)

    Book  MATH  Google Scholar 

  8. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Berlin (2006)

    MATH  Google Scholar 

  9. Heggernes, P.: van ’t Hof, P., Lokshtanov, D., Paul, C.: Obtaining a bipartite graph by contracting few edges. CoRR abs/1102.5441 (2011)

    Google Scholar 

  10. Lokshtanov, D., Marx, D.: Clustering with Local Restrictions. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 785–797. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  11. Marx, D.: Parameterized graph separation problems. Theoret. Comput. Sci. 351(3), 394–406 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Marx, D., Razgon, I.: Fixed-parameter tractability of multicut parameterized by the size of the cutset. In: Proceedings of the 43nd ACM Symposium on Theory of Computing, pp. 469–478 (2011)

    Google Scholar 

  13. Niedermeier, R.: Invitation to fixed-parameter algorithms. Oxford Lecture Series in Mathematics and its Applications, vol. 31. Oxford University Press, Oxford (2006)

    Book  MATH  Google Scholar 

  14. Reed, B., Smith, K., Vetta, A.: Finding odd cycle transversals. Operations Research Letters 32(4), 299–301 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Xiao, M.: Algorithms for Multiterminal Cuts. In: Hirsch, E.A., Razborov, A.A., Semenov, A., Slissenko, A. (eds.) CSR 2008. LNCS, vol. 5010, pp. 314–325. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Marx, D. (2011). Important Separators and Parameterized Algorithms. In: Kolman, P., Kratochvíl, J. (eds) Graph-Theoretic Concepts in Computer Science. WG 2011. Lecture Notes in Computer Science, vol 6986. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25870-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25870-1_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25869-5

  • Online ISBN: 978-3-642-25870-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics