Abstract
Segmenting foreground from background automatically is an active field of research. The graph cut approach is one of the promising methods to solve this problem. This approach requires that the weights of the graph are chosen optimally in order to obtain a good segmentation. We address this challenge focusing on the automatic segmentation of wood log images. We present a novel method based on density estimation to obtain information about both foreground and background. With this information the weights in the graph cut method can be set automatically. In order to validate our results, we use four different methods to set these weights. We show that of these approaches, our new method obtains the best results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alapuranen, P., Westman, T.: Automatic visual inspection of wood surfaces. In: 11th IAPR International Conference on Pattern Recognition, pp. 371–374 (1992)
Bishop, C.: Pattern Recognition and Machine Learning. Springer Science + Business Media, LLC, New York (2006)
Boykov, Y., Jolly, M.P.: Interactive graph cuts for optimal boundary region segmentation of object in n-d images. In: Int. C. Comput. Vision, pp. 105–112 (2001)
Boykov, Y., Kolmogorov, V.: An experimental comparision of min-cut/max-flow algorithms for energy minimation in vision. In: PAMI, pp. 1124–1137 (2004)
Rother, C., Kolmogorov, V., Blake, A.: Grabcut - interactive forground extraction using iterated graph cuts. ACM Transactions on Graphics, 309–314 (2004)
Russ, J.C.: The Image Processing Handbook, 5th edn. Taylor & Francis Group, LLC, Abington (2007)
Malmberg, F., Östlund, C., Borgefors, G.: Binarization of phase contrast volume images of fibrous materials - a case study. In: International Conference on Computer Vision Theory and Applications 2009, pp. 97–125 (2009)
Felzenszwalb, P.F.: Efficent graph-based image segmentation. International Journal of Computer Vision, 888–905 (2004)
Fink, F.: Fotooptische Erfassung der Dimension von Nadelrundholzabschnitten unter Einsatz digitaler Bildverarbeitenden Methoden. In: Dissertation. Fakultät für Forst- und Umweltwissenschaften der Albert-Ludwigs-Universität Freiburg i. Brsg (2004)
Jaehne, B.: Digital Image Processing, 6th reviewed and extended edn. Springer, Heidelberg (2005)
Jensen, H.W.: Realistic Image Synthesis Using Photon Mapping. The Morgan Kaufmann Series in Computer Graphics (2001)
Orchard, M., Bouman, C.: Color quantization of images. IEEE Transactions on Signal Processing, 2677–2690 (1991)
Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man and Cybernetics, 62–66 (1979)
Ruz, G.A., Estevez, P.A., Perez, C.A.: A neurofuzzy color image segmentation method for wood surface defect detection. Forest Products Journal 55(4), 52–58 (2005)
Pelleg, D., Moore, A.: X-Means: Extending K-mean with Efficient Estimation of the Number of Cluster. In: Seventeenth International Conference on Machine Learning, pp. 727–734 (2000)
Samet, H.: Foundations of Multidimensional and Metric Data Structures. The Morgan Kaufmann Series in Computer Graphics (2006)
Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 888–905 (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gutzeit, E., Ohl, S., Voskamp, J., Kuijper, A., Urban, B. (2011). Automatic Wood Log Segmentation Using Graph Cuts. In: Richard, P., Braz, J. (eds) Computer Vision, Imaging and Computer Graphics. Theory and Applications. VISIGRAPP 2010. Communications in Computer and Information Science, vol 229. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25382-9_7
Download citation
DOI: https://doi.org/10.1007/978-3-642-25382-9_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-25381-2
Online ISBN: 978-3-642-25382-9
eBook Packages: Computer ScienceComputer Science (R0)