[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 229))

Abstract

Segmenting foreground from background automatically is an active field of research. The graph cut approach is one of the promising methods to solve this problem. This approach requires that the weights of the graph are chosen optimally in order to obtain a good segmentation. We address this challenge focusing on the automatic segmentation of wood log images. We present a novel method based on density estimation to obtain information about both foreground and background. With this information the weights in the graph cut method can be set automatically. In order to validate our results, we use four different methods to set these weights. We show that of these approaches, our new method obtains the best results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alapuranen, P., Westman, T.: Automatic visual inspection of wood surfaces. In: 11th IAPR International Conference on Pattern Recognition, pp. 371–374 (1992)

    Google Scholar 

  2. Bishop, C.: Pattern Recognition and Machine Learning. Springer Science + Business Media, LLC, New York (2006)

    MATH  Google Scholar 

  3. Boykov, Y., Jolly, M.P.: Interactive graph cuts for optimal boundary region segmentation of object in n-d images. In: Int. C. Comput. Vision, pp. 105–112 (2001)

    Google Scholar 

  4. Boykov, Y., Kolmogorov, V.: An experimental comparision of min-cut/max-flow algorithms for energy minimation in vision. In: PAMI, pp. 1124–1137 (2004)

    Google Scholar 

  5. Rother, C., Kolmogorov, V., Blake, A.: Grabcut - interactive forground extraction using iterated graph cuts. ACM Transactions on Graphics, 309–314 (2004)

    Google Scholar 

  6. Russ, J.C.: The Image Processing Handbook, 5th edn. Taylor & Francis Group, LLC, Abington (2007)

    MATH  Google Scholar 

  7. Malmberg, F., Östlund, C., Borgefors, G.: Binarization of phase contrast volume images of fibrous materials - a case study. In: International Conference on Computer Vision Theory and Applications 2009, pp. 97–125 (2009)

    Google Scholar 

  8. Felzenszwalb, P.F.: Efficent graph-based image segmentation. International Journal of Computer Vision, 888–905 (2004)

    Google Scholar 

  9. Fink, F.: Fotooptische Erfassung der Dimension von Nadelrundholzabschnitten unter Einsatz digitaler Bildverarbeitenden Methoden. In: Dissertation. Fakultät für Forst- und Umweltwissenschaften der Albert-Ludwigs-Universität Freiburg i. Brsg (2004)

    Google Scholar 

  10. Jaehne, B.: Digital Image Processing, 6th reviewed and extended edn. Springer, Heidelberg (2005)

    Google Scholar 

  11. Jensen, H.W.: Realistic Image Synthesis Using Photon Mapping. The Morgan Kaufmann Series in Computer Graphics (2001)

    Google Scholar 

  12. Orchard, M., Bouman, C.: Color quantization of images. IEEE Transactions on Signal Processing, 2677–2690 (1991)

    Google Scholar 

  13. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man and Cybernetics, 62–66 (1979)

    Google Scholar 

  14. Ruz, G.A., Estevez, P.A., Perez, C.A.: A neurofuzzy color image segmentation method for wood surface defect detection. Forest Products Journal 55(4), 52–58 (2005)

    Google Scholar 

  15. Pelleg, D., Moore, A.: X-Means: Extending K-mean with Efficient Estimation of the Number of Cluster. In: Seventeenth International Conference on Machine Learning, pp. 727–734 (2000)

    Google Scholar 

  16. Samet, H.: Foundations of Multidimensional and Metric Data Structures. The Morgan Kaufmann Series in Computer Graphics (2006)

    Google Scholar 

  17. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 888–905 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gutzeit, E., Ohl, S., Voskamp, J., Kuijper, A., Urban, B. (2011). Automatic Wood Log Segmentation Using Graph Cuts. In: Richard, P., Braz, J. (eds) Computer Vision, Imaging and Computer Graphics. Theory and Applications. VISIGRAPP 2010. Communications in Computer and Information Science, vol 229. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25382-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25382-9_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25381-2

  • Online ISBN: 978-3-642-25382-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics