[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Similarity Metric Behavior for Image Retrieval Modeling in the Context of Spline Radial Basis Function

  • Conference paper
Advances in Soft Computing (MICAI 2011)

Abstract

In this paper, the analysis of similarity metrics used for performance evaluation of image retrieval frameworks is provided. Image retrieval based on similarity metrics obtains remarkable results in comparison with robust discrimination methods. Thus, the similarity metrics are used in matching process between visual query from user and descriptors of images in preprocessed collection. In contrast, the discrimination methods usually compare feature vectors computing distances between visual query and images in collections. In this research, a behavior of spline radial basis function used as metric for image similarity measurement is proposed and evaluated, comparing it with discrimination methods, particularly with general principal component analysis algorithm (GPCA). Spline radial basis function has been tested in image retrieval using a standard image collections, such as COIL-100. The obtained results using spline radial basis function report 88% of correct image retrieval avoiding a classification phase required in other well-known methods. The discussion of tests with designed Image Data Segmentation with Spline (IDSS) framework illustrates optimization and improvement of image retrieval process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Starostenko, O., Flores-Pulido, L., Rosas-Romero, R., Alarcon-Aquino, V., Sergiyenko, O., Tyrsa, V.: Shape Indexing and Semantic Image Retrieval Based on Ontological Descriptions. In: Luis, E.S., Hugo, J.E. (eds.) Automatic Image Annotation and Retrieval, vol. 1(1), pp. 58–73 (2011)

    Google Scholar 

  2. Portilla Flores, E.A., Vallejo, L.O., Flores Pulido, L., Molina Vilchis, M.A., Acedo Arias, M.A.: Evolución Diferencial para Recuperación de Información Visual (EDRIV). In: SOMI XXIII Congreso de la Sociedad Mexicana de Instrumentación, Xalapa Veracruz, Octubre del (2008)

    Google Scholar 

  3. Ma, Y., Yang, A.Y., Derksen, H., Fossum, R.: Estimation of Supspace Arrangements with Applications in Modeling and Segmenting Mixed Data. SIAM Review, Society for Industrial and Applied Mathematics 50(3), 413–458 (2008)

    MATH  Google Scholar 

  4. Flores Pulido, L., Estrada Cruz, W.E., Chavez Aragon, J.A.: An Image Retrieval System based on Feature Extraction for machine vision using three Similarity Metrics. In: Congreso Internacional Cars & Fof 2007, Universidad Militar De Nueva Granada, Bogotá Colombia, Agosto de 2007, 23rd ISPE International Conference On Cad/Cam, Robotics & Factories Of The Future (2007)

    Google Scholar 

  5. Nayar, S., Murase, H.: Technical Report: Columbia Object Image Library (COIL-100), Department of Computer Science, Columbia University, New York, U.S, p. 6 (February 1996)

    Google Scholar 

  6. Flores-Pulido, L., Chávez Aragón, J.A., Álvarez Ochoa, L.: Student Debate of PHAROS Summer School, PHAROS Summer School, Chaired by prof. Miki Haseyama, School of Information Science and Technology, Hokkaido University, Hokkaido University Global COE Program Editors, Como Italy (June 2009)

    Google Scholar 

  7. Fasshauer, G.E.: Meshfree Approximation Methods with Matlab. Interdisciplinary Mathematical Sciences, vol. 6. World Scientific, Singapore (2007)

    Book  MATH  Google Scholar 

  8. Regis, R.G., Shoemaker, C.A.: Constrained Global Optimization of Expensive Black Box Functions Using Radial Basis Functions. J. Glob. Optim. 31, 153–171 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Iske, A.: Lambda-Calculus and Computer Science Theory. Lecture Notes in Computational Science and Engineering, vol. 37. Springer, Heidelberg (1975) ISBN 3-540-20479-2

    Google Scholar 

  10. Flores-Pulido, L., Starostenko, O., Rodriguez-Gomez, G., Alarcón-Aquino, V.: Segmentation Data Modeling for Image Retrieval System. In: Proceedings of LANMR Workshop in CEUR Workshop Proceedings 2010, CEUR-WS.org, publication service of Sun SITE Central Europe operated under the umbrella of RWTH Aachen University with the support of Tilburg University. CEUR-WS.org, a publication series by Deutsche Bibliothek (2010), ISSN 1613-0073

    Google Scholar 

  11. Iqbal, Q.: Content Based Image Retrieval System, Univ. of Texas at Austin, Ph.D (2007), http://amazonece.utexas.edu/~qasim/research.htm

  12. Björner, A., Peeva, I., Sidman, J.: Subspace arrangements defined by products of linear forms. J. London Math. Soc. 71(2), 273–288 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Derksen, H.H.: Hilbert Series of Subspace Arrangements, preprint, arXiv.org (2005), http://arxiv.org/abs/math/0510584

  14. Vidal, R., Ma, Y., Piazzi, J.: A New GPCA Algorithm for Clustering Subspaces by Fitting, Differentiating and Dividing Polynomials. In: CVPR, pp. 510–551 (2004)

    Google Scholar 

  15. Donoho, D.: Compressed sensing. IEEE Transactions on Information Theory, 1289–1306 (April 2006)

    Google Scholar 

  16. Sugaya, Y., Kanatani, K.: Outliers removal for motion tracking by subspace separation. IEICE Trans. Inform. Systems E86-D, 1095–1102 (2003)

    Google Scholar 

  17. Huang, K., Wagner, A., Ma, Y.: Identification of hybrid linear time-invariant systems via subspace embedding and segmentation. In: Proceedings of the IEEE Conference on Decision and Control, vol. 3, pp. 3227–3234 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Flores-Pulido, L. et al. (2011). Similarity Metric Behavior for Image Retrieval Modeling in the Context of Spline Radial Basis Function. In: Batyrshin, I., Sidorov, G. (eds) Advances in Soft Computing. MICAI 2011. Lecture Notes in Computer Science(), vol 7095. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25330-0_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25330-0_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25329-4

  • Online ISBN: 978-3-642-25330-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics