Abstract
In this paper, the analysis of similarity metrics used for performance evaluation of image retrieval frameworks is provided. Image retrieval based on similarity metrics obtains remarkable results in comparison with robust discrimination methods. Thus, the similarity metrics are used in matching process between visual query from user and descriptors of images in preprocessed collection. In contrast, the discrimination methods usually compare feature vectors computing distances between visual query and images in collections. In this research, a behavior of spline radial basis function used as metric for image similarity measurement is proposed and evaluated, comparing it with discrimination methods, particularly with general principal component analysis algorithm (GPCA). Spline radial basis function has been tested in image retrieval using a standard image collections, such as COIL-100. The obtained results using spline radial basis function report 88% of correct image retrieval avoiding a classification phase required in other well-known methods. The discussion of tests with designed Image Data Segmentation with Spline (IDSS) framework illustrates optimization and improvement of image retrieval process.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Starostenko, O., Flores-Pulido, L., Rosas-Romero, R., Alarcon-Aquino, V., Sergiyenko, O., Tyrsa, V.: Shape Indexing and Semantic Image Retrieval Based on Ontological Descriptions. In: Luis, E.S., Hugo, J.E. (eds.) Automatic Image Annotation and Retrieval, vol. 1(1), pp. 58–73 (2011)
Portilla Flores, E.A., Vallejo, L.O., Flores Pulido, L., Molina Vilchis, M.A., Acedo Arias, M.A.: Evolución Diferencial para Recuperación de Información Visual (EDRIV). In: SOMI XXIII Congreso de la Sociedad Mexicana de Instrumentación, Xalapa Veracruz, Octubre del (2008)
Ma, Y., Yang, A.Y., Derksen, H., Fossum, R.: Estimation of Supspace Arrangements with Applications in Modeling and Segmenting Mixed Data. SIAM Review, Society for Industrial and Applied Mathematics 50(3), 413–458 (2008)
Flores Pulido, L., Estrada Cruz, W.E., Chavez Aragon, J.A.: An Image Retrieval System based on Feature Extraction for machine vision using three Similarity Metrics. In: Congreso Internacional Cars & Fof 2007, Universidad Militar De Nueva Granada, Bogotá Colombia, Agosto de 2007, 23rd ISPE International Conference On Cad/Cam, Robotics & Factories Of The Future (2007)
Nayar, S., Murase, H.: Technical Report: Columbia Object Image Library (COIL-100), Department of Computer Science, Columbia University, New York, U.S, p. 6 (February 1996)
Flores-Pulido, L., Chávez Aragón, J.A., Álvarez Ochoa, L.: Student Debate of PHAROS Summer School, PHAROS Summer School, Chaired by prof. Miki Haseyama, School of Information Science and Technology, Hokkaido University, Hokkaido University Global COE Program Editors, Como Italy (June 2009)
Fasshauer, G.E.: Meshfree Approximation Methods with Matlab. Interdisciplinary Mathematical Sciences, vol. 6. World Scientific, Singapore (2007)
Regis, R.G., Shoemaker, C.A.: Constrained Global Optimization of Expensive Black Box Functions Using Radial Basis Functions. J. Glob. Optim. 31, 153–171 (2005)
Iske, A.: Lambda-Calculus and Computer Science Theory. Lecture Notes in Computational Science and Engineering, vol. 37. Springer, Heidelberg (1975) ISBN 3-540-20479-2
Flores-Pulido, L., Starostenko, O., Rodriguez-Gomez, G., Alarcón-Aquino, V.: Segmentation Data Modeling for Image Retrieval System. In: Proceedings of LANMR Workshop in CEUR Workshop Proceedings 2010, CEUR-WS.org, publication service of Sun SITE Central Europe operated under the umbrella of RWTH Aachen University with the support of Tilburg University. CEUR-WS.org, a publication series by Deutsche Bibliothek (2010), ISSN 1613-0073
Iqbal, Q.: Content Based Image Retrieval System, Univ. of Texas at Austin, Ph.D (2007), http://amazonece.utexas.edu/~qasim/research.htm
Björner, A., Peeva, I., Sidman, J.: Subspace arrangements defined by products of linear forms. J. London Math. Soc. 71(2), 273–288 (2005)
Derksen, H.H.: Hilbert Series of Subspace Arrangements, preprint, arXiv.org (2005), http://arxiv.org/abs/math/0510584
Vidal, R., Ma, Y., Piazzi, J.: A New GPCA Algorithm for Clustering Subspaces by Fitting, Differentiating and Dividing Polynomials. In: CVPR, pp. 510–551 (2004)
Donoho, D.: Compressed sensing. IEEE Transactions on Information Theory, 1289–1306 (April 2006)
Sugaya, Y., Kanatani, K.: Outliers removal for motion tracking by subspace separation. IEICE Trans. Inform. Systems E86-D, 1095–1102 (2003)
Huang, K., Wagner, A., Ma, Y.: Identification of hybrid linear time-invariant systems via subspace embedding and segmentation. In: Proceedings of the IEEE Conference on Decision and Control, vol. 3, pp. 3227–3234 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Flores-Pulido, L. et al. (2011). Similarity Metric Behavior for Image Retrieval Modeling in the Context of Spline Radial Basis Function. In: Batyrshin, I., Sidorov, G. (eds) Advances in Soft Computing. MICAI 2011. Lecture Notes in Computer Science(), vol 7095. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25330-0_39
Download citation
DOI: https://doi.org/10.1007/978-3-642-25330-0_39
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-25329-4
Online ISBN: 978-3-642-25330-0
eBook Packages: Computer ScienceComputer Science (R0)