[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Computing Mobile Agent Routes with Node-Wise Constraints in Distributed Communication Systems

  • Conference paper
Advances in Artificial Intelligence (MICAI 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7094))

Included in the following conference series:

Abstract

A basic problem in the quality-of-service (QoS) analysis of multiagent distributed systems is to find optimal routes for the mobile agents that incrementally fuse the data as they visit hosts in the distributed system. The system is modeled as a directed acyclic graph in which the nodes represent hosts and the edges represent links between them. Each edge is assigned a cost (or benefit) and weights that represent link delay, reliability, or other QoS parameters. The agent scheduling problem is viewed as a constrained routing problem in which a maximum-benefit (or minimum-cost) route connecting the source and the destination subject to QoS constraints is to be found. We study approximation algorithms called ‘fully polynomial time approximation schemes’ (FPTAS) for solving the problem. We suggest an accelerating technique that improves known FPTAS, e.g., Hassin’s (1992); Camponogara & Shima’s (2010); and Elalouf et al. (2011) algorithms, and present new FPTASs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Guilfoyle, C., Warner, E.: Intelligent Agents: New Revolution in Software, p. 214. Ovum Ltd. Publisher, London (1994)

    Google Scholar 

  2. Torsun, I.S.: Foundations of Intelligent Knowledge-Based Systems, p. 507. Academic Press, London (1995)

    Google Scholar 

  3. Jennings, N.R., Wooldridge, M.J.: Applications of Intelligent Agents. In: Jennings, N.R., Wooldridge, M.J. (eds.) Agent Technology: Foundations, Applications and Markets, pp. 3–28. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  4. Shen, W., Norrie, D.H., Barthes, J.-P.: Multi-Agent Systems for Concurrent Intelligent Design and Manufacturing, p. 386. Taylor and Francis, London (2001)

    Google Scholar 

  5. White, J.E.: Telescript Technology: The Foundation for the Electronic Marketplace, White Paper. General Magic, Inc., USA (1994)

    Google Scholar 

  6. Tsichritzis, D.: Objectworld, Office Automation. Springer, Heidelberg (1985)

    Book  MATH  Google Scholar 

  7. Elalouf, A., Levner, E., Cheng, T.C.E.: Efficient Routing of Mobile Agents for Agent-based Integrated Enterprise Management: A General Acceleration Technique. LNBIP, vol. 88, pp. 1–20. Springer, Berlin (2011)

    Google Scholar 

  8. Papaioannou, T.: Using Mobile Agents to Improve the Alignment between Manufacturing and its IT Support Systems. In: Robotics and Autonomous Systems. Elsevier (1999)

    Google Scholar 

  9. Peng, Y., Finin, T., Labrou, Y., Chu, B., Long, J., Tolone, X., Boughannam, A.: A Multi-Agent System for Enterprise Integration. In: Proceedings of PAAM 1998, London, UK, pp. 155–169 (1998)

    Google Scholar 

  10. Qi, H., Iyengar, S.S., Chakrabarty, K.: Multi-Resolution Data Integration Using Mobile Agents in Distributed Sensor Networks. IEEE Trans. Systems, Man, and Cybernetics Part C: Applications and Rev. 31(3), 383–391 (2001)

    Article  Google Scholar 

  11. Wu, Q., Rao, N.S.V., Barhen, J., Iyengar, S.S., Vaishnavi, V.K., Qi, H., Chakrabarty, K.: On Computing Mobile Agent Routes for Data Fusion in Distributed Sensor Networks. IEEE Transactions on Knowledge and Data Engineering 16(6), 740–753 (2004)

    Article  Google Scholar 

  12. Gens, G.V., Levner, E.V.: Fast Approximation Algorithms for Job Sequencing with Deadlines. Discrete Applied Mathematics 3, 313–318 (1981)

    Article  MATH  Google Scholar 

  13. Gens, G.V., Levner, E.V.: Fast Approximation Algorithms for Knapsack Type Problems. LNCIS, vol. 23. Springer, Berlin (1980)

    MATH  Google Scholar 

  14. Hassin, R.: Approximation Schemes for the Restricted Shortest Path Problem. Mathematics of Operations Research 17(1), 36–42 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Goel, A., Ramakrishnan, K.G., Kataria, D., Logothetis, D.: Efficient Computation of Delay-sensitive Routes from One Source to All Destinations. In: IEEE Infocom 2001, pp. 854–858. IEEE Press (2001)

    Google Scholar 

  16. Xue, G., Sen, A., Zhang, W., Tang, J., Thulasiraman, K.: Finding a Path Subject to Many Additive QoS Constraints. IEEE Transactions on Networking 15, 201–211 (2007)

    Article  Google Scholar 

  17. Lorenz, D.H., Raz, D.: A Simple Efficient Approximation Scheme for the Restricted Shortest Path problem. Operations Research Letters 28(5), 213–219 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ergun, F., Sinha, R., Zhang, L.: An Improved FPTAS for Restricted Shortest Path. Information Processing Letters 83(5), 287–291 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Camponogara, E., Shima, R.B.: Mobile Agent Routing with Time Constraints: A Resource Constrained Longest-Path Approach. Journal of Universal Computer Science 16(3), 372–401 (2010)

    MATH  Google Scholar 

  20. Sahni, S.: Algorithms for Scheduling Independent Tasks. Journal of the ACM 23(1), 116–127 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  21. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, ch. 24.2. MIT Press (2001)

    Google Scholar 

  22. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows. Prentice Hall, New Jersey (1993)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Elalouf, A., Levner, E., Cheng, T.C.E. (2011). Computing Mobile Agent Routes with Node-Wise Constraints in Distributed Communication Systems. In: Batyrshin, I., Sidorov, G. (eds) Advances in Artificial Intelligence. MICAI 2011. Lecture Notes in Computer Science(), vol 7094. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25324-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25324-9_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25323-2

  • Online ISBN: 978-3-642-25324-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics