[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Recommender System for Linked Data

  • Chapter
  • First Online:
Semantic Search over the Web

Part of the book series: Data-Centric Systems and Applications ((DCSA))

Abstract

The use of Linked Data datasets poses new challenges and issues in the development of next-generation systems for recommendation. In this chapter, we present MORE (MOREthan MOvieREcommendation), a Facebook -semantic application that recommends movies to the user by using information coming both from her profile and from semantic datasets. MORE exploits the power of social knowledge bases in the Linked Data cloud (e.g., DBpedia ) to detect semantic affinities among movies by adopting a novel approach that computes similarities based on a semantic vector space model (sVSM). MORE is freely available as a Facebook application and has been evaluated by real users, proving the validity of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://dbpedia.org/resource/Keira_Knightley

  2. 2.

    http://www.imdb.com, http://www.linkedmdb.org

  3. 3.

    http://dbpedia.org/sparql

  4. 4.

    http://en.wikipedia.org/wiki/Bridget_Jones’s_Diary_(film)

  5. 5.

    http://en.wikipedia.org/wiki/Love_Actually

  6. 6.

    http://en.wikipedia.org/wiki/Bridget_Jones:_The_Edge_of_Reason_(film)

  7. 7.

    http://en.wikipedia.org/wiki/Four_Weddings_and_a_Funeral

  8. 8.

    http://www.imdb.com/title/tt0314331/

  9. 9.

    This feature is currently not implemented in the online version of the application, and is part of our future work.

  10. 10.

    http://developers.facebook.com/docs/reference/api/

  11. 11.

    http://wiki.dbpedia.org/Downloads{3}{6}\#ontologyinfoboxproperties

  12. 12.

    http://neo4j.org

References

  1. Baeza-Yates, R.A., Ribeiro-Neto, B.: Modern Information Retrieval: The Concepts and Technology Behind Search. Addison-Wesley Professional, Reading, MA (2011)

    Google Scholar 

  2. Berners-Lee, T., Chen, Y., Chilton, L., Connolly, D., Dhanaraj, R., Hollenbach, J., Lerer, A., Sheets, D.: Tabulator: exploring and analyzing linked data on the semantic web. In Procedings of the 3rd international semantic web user interaction workshop (SWUI06) (2006)

    Google Scholar 

  3. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web: scientific American. Scientific American (2001)

    Google Scholar 

  4. Bizer, C., Heath, T., Berners-Lee, T.: Linked data – the story so far. Int. J. Semant. Web Inf. Syst. 5(3), 1–22 (2009)

    Article  Google Scholar 

  5. Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., Hellmann, S.: Dbpedia – a crystallization point for the web of data. Web Semant. 7, 154–165 (2009)

    Article  Google Scholar 

  6. Chernov, S., Iofciu, T., Nejdl, W., Zhou, X.: Extracting semantics relationships between wikipedia categories. In: Volkel M., Schaffert S. (eds.) Proceedings of the 1st Workshop on Semantic Wikis – from Wiki to Semantics, Workshop on Semantic Wikis. ESWC2006 (2006)

    Google Scholar 

  7. Cleverdon, C.W.: The significance of the cranfield tests on index languages. Proceedings of the 14th Annual International ACM SIGIR, pp. 3–12 (1991)

    Google Scholar 

  8. Eidoon, Z., Yazdani, N., Oroumchian, F.: A vector based method of ontology matching. Proceedings of 3rd International Conference on Semantics, Knowledge and Grid, pp. 378–381 (2007)

    Google Scholar 

  9. Ferris, B., Jacobson, K.: The Recommendation Ontology 0.3. http://purl.org/ontology/rec/core\#(2010)

  10. Franz, T., Schultz, A., Sizov, S., Staab, S.: Triplerank: ranking semantic web data by tensor decomposition. Proceedings of the 8th ISWC, ISWC ’09, pp. 213–228 (2009)

    Google Scholar 

  11. Garden, M., Dudek, G.: Semantic feedback for hybrid recommendations in recommendz. IEEE international conference EEE’05, pp. 754–759 (2005)

    Google Scholar 

  12. Golbeck, J., Hendler, J.: Filmtrust: movie recommendations using trust in web-based social networks. Proceedings of the IEEE CCNC (2006)

    Google Scholar 

  13. Hassanzadeh, O., Consens, M.P.: Linked movie data base. Proceedings of the WWW2009 Workshop on Linked Data on the Web (LDOW2009) (2009)

    Google Scholar 

  14. Herlocker, J., Konstan, J.A., Riedl, J.: Explaining collaborative filtering recommendations. Proceeding on the ACM 2000 Conference on Computer Supported Cooperative Work, pp. 241–250 (2000)

    Google Scholar 

  15. Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. 22, 5–53 (2004)

    Article  Google Scholar 

  16. Mukherjee, R., Sajja, N., Sen, S.: A movie recommendation system – an application of voting theory in user modeling. User Model. User-Adapt. Interact. 13(1–2), 5–33 (2003)

    Article  Google Scholar 

  17. Nazir, A., Raza, S., Chuah, C.N.: Unveiling facebook: a measurement study of social network based applications. Proceedings of the 8th ACM SIGCOMM Conference on Internet Measurement, IMC ’08, pp. 43–56. ACM, New York, NY, USA (2008)

    Google Scholar 

  18. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: bringing order to the web. Technical Report 1999-66, Stanford InfoLab (1999)

    Google Scholar 

  19. Passant, A.: dbrec: music recommendations using dbpedia. Proceedings of the 9th International Sematic Web Conference, ISWC’10, pp. 209–224 (2010)

    Google Scholar 

  20. Passant, A.: Measuring semantic distance on linking data and using it for resources recommendations. Proceedings of the AAAI Spring Symposium ”Linked Data Meets Artificial Intelligence” (2010)

    Google Scholar 

  21. Perny, P., Zucker, J.: Preference-based search and machine learning for collaborative filtering: the film-consei recommender system. Inform. Interac. Intel. 1, 9–48 (2001)

    Google Scholar 

  22. Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF. W3C Recommendation (2008)

    Google Scholar 

  23. Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.): Recommender Systems Handbook. Springer, Berlin, Heidelberg, New York (2011)

    Google Scholar 

  24. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Commun. ACM 18, 613–620 (1975)

    Article  Google Scholar 

  25. Schafer, J.B., Konstan, J.A., Riedl, J.: E-commerce recommendation applications. Data Mining Knowledge Dis. 5, 115–153 (2001)

    Article  Google Scholar 

  26. Stonebraker, M.: Sql databases v. nosql databases. Commun. ACM 53, 10–11 (2010)

    Article  Google Scholar 

  27. Szomszor, M., Cattuto, C., Alani, H., O’Hara, K., Baldassarri, A., Loreto, V., Servedio, V.D.: Folksonomies, the semantic web, and movie recommendation. 4th European semantic web conference (2007)

    Google Scholar 

  28. Tous, R., Delgado, J.: A vector space model for semantic similarity calculation and owl ontology alignment. DEXA, pp. 307–316 (2006)

    Google Scholar 

  29. Von Eye, A., Mun, E.Y.: Analyzing Rater Agreement: Manifest Variable Methods. Lawrence Erlbaum Associates, Mahwah, NJ, USA (2004)

    Google Scholar 

  30. White, R.W., Roth, R.A.: Exploratory search: beyond the query-response paradigm. Syn. Lect. Inform. Concepts Retriev. Serv. 1(1), 1–98 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Mirizzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mirizzi, R., Di Noia, T., Di Sciascio, E., Ragone, A. (2012). A Recommender System for Linked Data. In: De Virgilio, R., Guerra, F., Velegrakis, Y. (eds) Semantic Search over the Web. Data-Centric Systems and Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25008-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25008-8_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25007-1

  • Online ISBN: 978-3-642-25008-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics