Abstract
The use of Linked Data datasets poses new challenges and issues in the development of next-generation systems for recommendation. In this chapter, we present MORE (MOREthan MOvieREcommendation), a Facebook -semantic application that recommends movies to the user by using information coming both from her profile and from semantic datasets. MORE exploits the power of social knowledge bases in the Linked Data cloud (e.g., DBpedia ) to detect semantic affinities among movies by adopting a novel approach that computes similarities based on a semantic vector space model (sVSM). MORE is freely available as a Facebook application and has been evaluated by real users, proving the validity of our approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
This feature is currently not implemented in the online version of the application, and is part of our future work.
- 10.
- 11.
- 12.
References
Baeza-Yates, R.A., Ribeiro-Neto, B.: Modern Information Retrieval: The Concepts and Technology Behind Search. Addison-Wesley Professional, Reading, MA (2011)
Berners-Lee, T., Chen, Y., Chilton, L., Connolly, D., Dhanaraj, R., Hollenbach, J., Lerer, A., Sheets, D.: Tabulator: exploring and analyzing linked data on the semantic web. In Procedings of the 3rd international semantic web user interaction workshop (SWUI06) (2006)
Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web: scientific American. Scientific American (2001)
Bizer, C., Heath, T., Berners-Lee, T.: Linked data – the story so far. Int. J. Semant. Web Inf. Syst. 5(3), 1–22 (2009)
Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., Hellmann, S.: Dbpedia – a crystallization point for the web of data. Web Semant. 7, 154–165 (2009)
Chernov, S., Iofciu, T., Nejdl, W., Zhou, X.: Extracting semantics relationships between wikipedia categories. In: Volkel M., Schaffert S. (eds.) Proceedings of the 1st Workshop on Semantic Wikis – from Wiki to Semantics, Workshop on Semantic Wikis. ESWC2006 (2006)
Cleverdon, C.W.: The significance of the cranfield tests on index languages. Proceedings of the 14th Annual International ACM SIGIR, pp. 3–12 (1991)
Eidoon, Z., Yazdani, N., Oroumchian, F.: A vector based method of ontology matching. Proceedings of 3rd International Conference on Semantics, Knowledge and Grid, pp. 378–381 (2007)
Ferris, B., Jacobson, K.: The Recommendation Ontology 0.3. http://purl.org/ontology/rec/core\#(2010)
Franz, T., Schultz, A., Sizov, S., Staab, S.: Triplerank: ranking semantic web data by tensor decomposition. Proceedings of the 8th ISWC, ISWC ’09, pp. 213–228 (2009)
Garden, M., Dudek, G.: Semantic feedback for hybrid recommendations in recommendz. IEEE international conference EEE’05, pp. 754–759 (2005)
Golbeck, J., Hendler, J.: Filmtrust: movie recommendations using trust in web-based social networks. Proceedings of the IEEE CCNC (2006)
Hassanzadeh, O., Consens, M.P.: Linked movie data base. Proceedings of the WWW2009 Workshop on Linked Data on the Web (LDOW2009) (2009)
Herlocker, J., Konstan, J.A., Riedl, J.: Explaining collaborative filtering recommendations. Proceeding on the ACM 2000 Conference on Computer Supported Cooperative Work, pp. 241–250 (2000)
Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. 22, 5–53 (2004)
Mukherjee, R., Sajja, N., Sen, S.: A movie recommendation system – an application of voting theory in user modeling. User Model. User-Adapt. Interact. 13(1–2), 5–33 (2003)
Nazir, A., Raza, S., Chuah, C.N.: Unveiling facebook: a measurement study of social network based applications. Proceedings of the 8th ACM SIGCOMM Conference on Internet Measurement, IMC ’08, pp. 43–56. ACM, New York, NY, USA (2008)
Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: bringing order to the web. Technical Report 1999-66, Stanford InfoLab (1999)
Passant, A.: dbrec: music recommendations using dbpedia. Proceedings of the 9th International Sematic Web Conference, ISWC’10, pp. 209–224 (2010)
Passant, A.: Measuring semantic distance on linking data and using it for resources recommendations. Proceedings of the AAAI Spring Symposium ”Linked Data Meets Artificial Intelligence” (2010)
Perny, P., Zucker, J.: Preference-based search and machine learning for collaborative filtering: the film-consei recommender system. Inform. Interac. Intel. 1, 9–48 (2001)
Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF. W3C Recommendation (2008)
Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.): Recommender Systems Handbook. Springer, Berlin, Heidelberg, New York (2011)
Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Commun. ACM 18, 613–620 (1975)
Schafer, J.B., Konstan, J.A., Riedl, J.: E-commerce recommendation applications. Data Mining Knowledge Dis. 5, 115–153 (2001)
Stonebraker, M.: Sql databases v. nosql databases. Commun. ACM 53, 10–11 (2010)
Szomszor, M., Cattuto, C., Alani, H., O’Hara, K., Baldassarri, A., Loreto, V., Servedio, V.D.: Folksonomies, the semantic web, and movie recommendation. 4th European semantic web conference (2007)
Tous, R., Delgado, J.: A vector space model for semantic similarity calculation and owl ontology alignment. DEXA, pp. 307–316 (2006)
Von Eye, A., Mun, E.Y.: Analyzing Rater Agreement: Manifest Variable Methods. Lawrence Erlbaum Associates, Mahwah, NJ, USA (2004)
White, R.W., Roth, R.A.: Exploratory search: beyond the query-response paradigm. Syn. Lect. Inform. Concepts Retriev. Serv. 1(1), 1–98 (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Mirizzi, R., Di Noia, T., Di Sciascio, E., Ragone, A. (2012). A Recommender System for Linked Data. In: De Virgilio, R., Guerra, F., Velegrakis, Y. (eds) Semantic Search over the Web. Data-Centric Systems and Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25008-8_12
Download citation
DOI: https://doi.org/10.1007/978-3-642-25008-8_12
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-25007-1
Online ISBN: 978-3-642-25008-8
eBook Packages: Computer ScienceComputer Science (R0)