[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Method to Reuse Old Populations in Genetic Algorithms

  • Conference paper
Progress in Artificial Intelligence (EPIA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7026))

Included in the following conference series:

Abstract

In this paper a method to increase the optimization ability of genetic algorithms (GAs) is proposed. To promote population diversity, a fraction of the worst individuals of the current population is replaced by individuals from an older population. To experimentally validate the approach we have used a set of well-known benchmark problems of tunable difficulty for GAs. Standard GA with and without elitism and steady state GA have been augmented with the proposed method. The obtained results show that the algorithms augmented with the proposed method perform better than the not-augmented algorithms or have the same performances. Furthermore, the proposed method depends on two parameters: one of them regulates the size of the fraction of the population replaced and the other one decides the “age” of the population used for the replacement. Experimental results indicate that better performances have been achieved with high values of the former parameter and low values of the latter one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cao, Y., Luo, W.: Novel associative memory retrieving strategies for evolutionary algorithms in dynamic environments. In: Cai, Z., Li, Z., Kang, Z., Liu, Y. (eds.) ISICA 2009. LNCS, vol. 5821, pp. 258–268. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. De Castro, L.N., Von Zuben, F.J.: The clonal selection algorithm with engineering applications. In: GECCO 2002 - Workshop Proceedings, pp. 36–37. Morgan Kaufmann (2002)

    Google Scholar 

  3. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Norwell (1997)

    Book  MATH  Google Scholar 

  4. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  5. Greensmith, J., Whitbrook, A.M., Aickelin, U.: Artificial immune systems (2010). Computing Research Repository (CoRR), abs/1006.4949 (2010), http://arxiv.org/abs/1006.4949

  6. Holland, J.H.: Adaptation in Natural and Artificial Systems. The University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  7. Kauffman, S.A.: Adaptation on rugged fitness landscapes. In: Stein, D. (ed.) Lectures in the Sciences of Complexity, Redwood City. SFI Studies in the Sciences of Complexity, Lecture, vol. I, Addison-Wesley (1989)

    Google Scholar 

  8. Kauffman, S., Levin, S.: Towards a general theory of adaptive walks on rugged landscapes. J. Theoret. Biol. 128(1), 11–45 (1987)

    Article  MathSciNet  Google Scholar 

  9. Louis, S., Li, G.: Augmenting genetic algorithms with memory to solve traveling salesman problems. In: Proceedings of the Joint Conference on Information Sciences, pp. 108–111. Duke University Press (1997)

    Google Scholar 

  10. Moore, D.S.: The Basic Practice of Statistics, 2nd edn. W. H. Freeman & Co., New York (1999)

    Google Scholar 

  11. Schaffer, J.D., Eshelman, L.J.: On crossover as an evolutionary viable strategy. In: Belew, R.K., Booker, L.B. (eds.) Proceedings of the 4th International Conference on Genetic Algorithms, pp. 61–68. Morgan Kaufmann, San Francisco (1991)

    Google Scholar 

  12. Sheppard, J., Salzberg, S.: Combining genetic algorithms with memory based reasoning. In: Proceedings of the Sixth International Conference on Genetic Algorithms, pp. 452–459. Morgan Kaufmann (1995)

    Google Scholar 

  13. Wiering, M.: Memory-based memetic algorithms. In: Nowe, A., Lenaerts, T., Steenhout, K. (eds.) Benelearn 2004: Proceedings of the Thirteenth Belgian-Dutch Conference on Machine Learning, pp. 191–198 (2004)

    Google Scholar 

  14. Yang, S.: Genetic algorithms with memory-and elitism-based immigrants in dynamic environments. Evol. Comput. 16, 385–416 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Castelli, M., Manzoni, L., Vanneschi, L. (2011). A Method to Reuse Old Populations in Genetic Algorithms. In: Antunes, L., Pinto, H.S. (eds) Progress in Artificial Intelligence. EPIA 2011. Lecture Notes in Computer Science(), vol 7026. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24769-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24769-9_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24768-2

  • Online ISBN: 978-3-642-24769-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics