[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Guess What? A Game for Affective Annotation of Video Using Crowd Sourcing

  • Conference paper
Affective Computing and Intelligent Interaction (ACII 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6974))

Abstract

One of the most time consuming and laborious problems facing researchers in Affective Computing is annotation of data, particularly with the recent adoption of multimodal data. Other fields, such as Computer Vision, Language Processing and Information Retrieval have successfully used crowd sourcing (or human computation) games to label their data sets. Inspired by their work, we have developed a Facebook game called Guess What? for labeling multimodal, affective video data. This paper describes the game and an initial evaluation of it for social context labeling. In our experiment, 33 participants used the game to label 154 video/question pairs over the course of a few days, and their overall inter-rater reliability was good (Krippendorff’s α = .70). We believe this game will be a useful resource for other researchers and ultimately plan to make Guess What? open source and available to anyone who is interested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. von Ahn, L., Dabbish, L.: Labeling images with a computer game. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI), pp. 319–326. ACM, New York (2004)

    Google Scholar 

  2. Baron-Cohen, S., Golan, O., Wheelwright, S., Hill, J.J.: Mind reading: the interactive guide to emotions (2004), http://www.jkp.com/mindreading

  3. Bavelas, J., McGee, D., Phillips, B., Routledge, R.: Microanalysis of communication in psychotherapy. Human Systems 11(1), 47–66 (2000)

    Google Scholar 

  4. Bernstein, M., Chi, E., Chilton, L., Hartmann, B., Kittur, A., Miller, R.: Crowdsourcing and Human Computation: Systems, Studies and Platforms (May 2011), http://crowdresearch.org/chi2011-workshop/ (last accessed April 15, 2011)

  5. Burke, M.A., Young, P.: Norms, Customs, and Conventions. In: Benhabib, J., Bisin, A., Jackson, M. (eds.) Handbook for Social Economics. Elsevier, Amsterdam (2010)

    Google Scholar 

  6. Calvo, R., D’Mello, S.: Affect Detection: An Interdisciplinary Review of Models, Methods, and their Applications. IEEE Transactions on Affective Computing 1(1), 18–37 (2010)

    Article  Google Scholar 

  7. Ganjisaffar, Y., Javanmardi, S., Lopes, C.: Leveraging crowdsourcing heuristics to improve search in wikipedia. In: Proceedings of the 5th International Symposium on Wikis and Open Collaboration, WikiSym 2009, pp. 27:1–27:2. ACM, New York (2009)

    Google Scholar 

  8. Golan, O., Baron-Cohen, S.: Systemizing empathy: Teaching adults with Asperger syndrome or high-functioning autism to recognize complex emotions using interactive multimedia. Development and Psychopathology 18(02), 591–617 (2006)

    Article  Google Scholar 

  9. Hayes, A.: SPSS, SAS, and Mplus Macros and Code (2011), http://www.afhayes.com/spss-sas-and-mplus-macros-and-code.html (last accessed April 15, 2011)

  10. Hayes, A.F., Krippendorff, K.: Answering the call for a standard reliability measure for coding data. Communication Methods and Measures (2007)

    Google Scholar 

  11. Hsueh, P.Y., Melville, P., Sindhwani, V.: Data quality from crowdsourcing: a study of annotation selection criteria. In: Proceedings of the NAACL HLT 2009 Workshop on Active Learning for Natural Language Processing, HLT 2009, pp. 27–35. Association for Computational Linguistics (2009)

    Google Scholar 

  12. Kazai, G., Lease, M.: TREC 2011 Crowdsourcing Track (November 2011), https://sites.google.com/site/treccrowd2011 (last accessed April 15, 2011)

  13. Krippendorff, K.: Content Analysis: An Introduction to Its Methodology. Sage Publications, Thousand Oaks (2004)

    Google Scholar 

  14. McCreadie, R., Macdonald, C., Ounis, I.: Crowdsourcing a news query classification dataset. In: Proceedings of the ACM SIGIR 2010 Workshop on Crowdsourcing for Search Evaluation (CSE 2010), pp. 31–38 (2010)

    Google Scholar 

  15. Nowak, S., Rüger, S.: How reliable are annotations via crowdsourcing: a study about inter-annotator agreement for multi-label image annotation. In: Proceedings of the International Conference on Multimedia Information Retrieval, pp. 557–566. ACM, New York (2010)

    Chapter  Google Scholar 

  16. O’Connor, M.F.: Automatic Understanding of Social Scenes. Master’s thesis, University of Cambridge (2011)

    Google Scholar 

  17. Pantic, M., Rothkrantz, L.: Toward an affect-sensitive multimodal human-computer interaction. Proceedings of the IEEE 91(9), 1370–1390 (2003)

    Article  Google Scholar 

  18. Philippot, P., Feldman, R., Coats, E.: The social context of nonverbal behavior. Cambridge Univ. Pr., Cambridge (1999)

    Google Scholar 

  19. Riek, L.D., Robinson, P.: Challenges and opportunities in building socially intelligent machines. IEEE Signal Processing (2011)

    Google Scholar 

  20. Scherer, K., Banziger, T., Roesch, E.: A blueprint for affective computing: A sourcebook. Oxford University Press, Oxford (2010)

    Google Scholar 

  21. Sheng, V., Provost, F., Ipeirotis, P.: Get another label? improving data quality and data mining using multiple, noisy labelers. In: Proceeding of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 614–622. ACM, New York (2008)

    Chapter  Google Scholar 

  22. Snow, R., O’Connor, B., Jurafsky, D., Ng, A.: Cheap and fast—but is it good?: evaluating non-expert annotations for natural language tasks. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 254–263. Association for Computational Linguistics (2008)

    Google Scholar 

  23. Tarasov, A., Delany, S., Cullen, C.: Using crowdsourcing for labelling emotional speech assets. In: W3C workshop on Emotion ML (2010)

    Google Scholar 

  24. Yan, R., Yang, J., Hauptmann, A.: Automatically labeling video data using multi-class active learning. In: 9th IEEE International Conference on Computer Vision, pp. 516–523. IEEE, Los Alamitos (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Riek, L.D., O’Connor, M.F., Robinson, P. (2011). Guess What? A Game for Affective Annotation of Video Using Crowd Sourcing. In: D’Mello, S., Graesser, A., Schuller, B., Martin, JC. (eds) Affective Computing and Intelligent Interaction. ACII 2011. Lecture Notes in Computer Science, vol 6974. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24600-5_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24600-5_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24599-2

  • Online ISBN: 978-3-642-24600-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics