[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Model-Based (Mechanical) Product Design

  • Conference paper
Model Driven Engineering Languages and Systems (MODELS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 6981))

Abstract

Mechanical product engineering is a research and industrial activity which studies the design of complex mechanical systems. The process, which involves the collaboration of various experts using domain-specific software, raises syntactic and semantic interoperability issues which are not addressed by existing software solutions or their underlying concepts. This article proposes a flexible model-based software architecture that allows for a federation of experts to define and collaborate in innovative design processes. The presented generic approach is backed and validated by its implementation on an academic usecase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Etienne, A., Guyot, E., Cabannes, G., Ducellier, G., Roucoules, L.: Specification and developments of interoperability solutions dedicated to multiple expertise collaboration in a design framework. In: International Conference on Software, Knowledge, Information Management and Applications (2008)

    Google Scholar 

  2. Bézivin, J., Jouault, F., Rosenthal, P., Valduriez, P.: Modeling in the large and modeling in the small. In: Aßmann, U., Aksit, M., Rensink, A. (eds.) MDAFA 2003. LNCS, vol. 3599, pp. 33–46. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. PLM Market Growth in 2008, Mid-Year (2009), http://www.cimdata.com

  4. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation approaches. IBM Syst. J. 45, 621–645 (2006)

    Article  Google Scholar 

  5. Delvion usecase (2011), http://www.lsis.org/kleinerm/MPD/Delvion_usecase.html

  6. Kadiri, S.E., Pernelle, P., Delattre, M., Bouras, A.: Current situation of plm systems in sme/smi: Survey’s results and analysis. In: International Conference on Product Lifecycle Management (2009)

    Google Scholar 

  7. Ehrig, K., Guerra, E., Lengyel, J.L., Levendovszky, T., Prange, U., Taentzer, G., Varró, D., Varró-Gyapay, S.: Model transformation by graph transformation: A comparative study. In: MTiP 2005, International Workshop on Model Transformations in Practice (Satellite Event of MoDELS 2005) (2005)

    Google Scholar 

  8. EMF (2009), http://www.eclipse.org/modeling/emf/

  9. Krause, F.-L., et al.: Product modelling. CIRP Annals - Manufacturing Technology 42(2), 695–706 (1993)

    Article  Google Scholar 

  10. ISO 10303-11, Industrial automation systems and integration - Product data representation and exchange - Part 11: The EXPRESS language reference (1994)

    Google Scholar 

  11. ISO 10303-203, Industrial automation systems and integration - Product data representation and exchange - Part 203: Configuration controlled 3D designs of mechanical parts and assemblies (1994)

    Google Scholar 

  12. Maier, F., Mayer, W., Stumptner, M., Muehlenfeld, A.: Ontology-based process modelling for design optimisation support. In: Design Computing and Cognition 2008, pp. 513–532. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Frey, E., Ostrosi, E., Roucoules, L., Gomes, S.: Multi-domain product modelling: from requirements to cad and simulation tools. In: International Conference on Engineering Design (2009)

    Google Scholar 

  14. Booch, G., Rumbaugh, J., Jacobson, I.: Unified Modeling Language User Guide. Addison-Wesley Professional, Reading (2005)

    Google Scholar 

  15. Pahl, G., Beitz, W., Feldhusen, J., Grote, K.H.: Engineering design: a systematic approach, 6th edn. Springer, Heidelberg (1996)

    Book  Google Scholar 

  16. Galvão, I., Goknil, A.: Survey of traceability approaches in model-driven engineering. In: EDOC, pp. 313–326. IEEE Computer Society, Los Alamitos (2007)

    Google Scholar 

  17. ISO 14258, Industrial Automation Systems - Concepts and Rules for Enterprise Models (1994)

    Google Scholar 

  18. Jouault, F., Kurtev, I.: Transforming Models with ATL. In: Bruel, J.-M. (ed.) MoDELS 2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  19. Klein Meyer, J.S.: Modélisation multi-physique des systémes complexes dans un contexte de DFX. Application á la conception de micro-mécanismes. PhD thesis, Université de Technologie de Troyes (2008)

    Google Scholar 

  20. Kitamura, Y., Takafuji, S., Mizoguchi, R.: Towards a reference ontology for functional knowledge interoperability. In: ASME Conference Proceedings, 2007(48078), pp. 111–120 (2007)

    Google Scholar 

  21. Klein Meyer, J., Roucoules, L., Grave, A., Chaput, J.: Case study of a mems switch supported by a fbs and dfm framework. In: The Future of Product Development, pp. 377–386. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  22. Krause, F.-L., Kaufmann, U.: Meta-modelling for interoperability in product design. CIRP Annals - Manufacturing Technology 56(1), 159–162 (2007)

    Article  Google Scholar 

  23. Roucoules, L., Skander, A.: Manufacturing process selection and integration in product design. analysis and synthesis approaches. In: CIRP Design Seminar (2003)

    Google Scholar 

  24. Roucoules, L., Lafon, P., et al.: Knowledge intensive approach towards multiple product modelling and geometry emergence to foster cooperative design. In: CIRP Design Seminar (2006)

    Google Scholar 

  25. Mühlenfeld, A., Maier, F., Mayer, W., Stumptner, M.: Modelling and management of design artefacts in design optimisation. In: Collaborative Product and Service Life Cycle Management for a Sustainable World, Advanced Concurrent Engineering, pp. 513–520. Springer, London (2008)

    Chapter  Google Scholar 

  26. Object Management Group. Meta Object Facility (MOF) 2.0 Query/View/Transformation (QVT) Specification, version 1.0 (2008)

    Google Scholar 

  27. Tichkiewitch, S.: Specifications on integrated design methodology using a multi-view product model. In: Biennial Joint Conference on Engineering Systems Design and Analysis, pp. 101–108 (1996)

    Google Scholar 

  28. Sadeghi, M., Noel, F., Hadj-Hamou, K.: Development of control mechanisms to support coherency of product model during cooperative design process. Journal of Intelligent Manufacturing 21, 539–554 (2010)

    Article  Google Scholar 

  29. Shah, A.A., Schaefer, D., Paredis, C.J.J.: Enabling multi-view modeling with sysml profiles and model transformations. In: International Conference on Product Lifecycle Management, pp. 527–538 (2009)

    Google Scholar 

  30. Shah, J.J.: Assessment of features technology. Computer-Aided Design 23(5), 331–343 (1991)

    Article  MATH  Google Scholar 

  31. Sohlenius, G.: Concurrent engineering. CIRP Annals - Manufacturing Technology 41(2), 645–655 (1992)

    Article  Google Scholar 

  32. Staab, S., Walter, T., Gröner, G., Parreiras, F.S.: Model Driven Engineering with Ontology Technologies. In: Aßmann, U., Bartho, A., Wende, C. (eds.) Reasoning Web. LNCS, vol. 6325, pp. 62–98. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  33. ISO 10303, Industrial automation systems and integration - Product data representation and exchange (1994)

    Google Scholar 

  34. Stevens, P.: Bidirectional model transformations in qvt: semantic issues and open questions. Software and System Modeling 9(1), 7–20 (2010)

    Article  Google Scholar 

  35. CATIA (Dassault systems) (2011), http://www.3ds.com/products/catia/welcome/

  36. TDC system (2011), http://www.tdc.fr/en/products/tdc_system.php

  37. Gary Wang, G., Shan, S.: Review of metamodeling techniques in support of engineering design optimization. Mechanical Design 129(4), 370–380 (2007)

    Article  Google Scholar 

  38. Yan, X.-T.: A multiple perspective product modeling and simulation approach to engineering design support. Concurrent Engineering Research and Application Journal 11(3), 221–234 (2003)

    Article  Google Scholar 

  39. XTEXT (2011), http://www.eclipse.org/Xtext

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Iraqi-Houssaini, M., Kleiner, M., Roucoules, L. (2011). Model-Based (Mechanical) Product Design. In: Whittle, J., Clark, T., Kühne, T. (eds) Model Driven Engineering Languages and Systems. MODELS 2011. Lecture Notes in Computer Science, vol 6981. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24485-8_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24485-8_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24484-1

  • Online ISBN: 978-3-642-24485-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics