[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Comparing Clustering Schemes at Two Levels of Granularity for Mobile Call Mining

  • Conference paper
Rough Sets and Knowledge Technology (RSKT 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6954))

Included in the following conference series:

Abstract

Datasets in many applications can be viewed at different levels of granularity. Depending on the level of granularity, data mining techniques can produce different results. Correlating results from different levels of granularity can improve the quality of analysis. This paper proposes a process and measures for comparing clustering results from two levels of granularity for a mobile call dataset. The clustering is applied to the phone calls as well as phone numbers, where phone calls are finer granules while phone numbers are coarser granules. The coarse granular clustering is then expanded to a finer level and finer granular clustering is contracted to the coarser granularity for additional qualitative analysis. The paper uses a popular cluster quality measure called Davies-Bouldin index as well as a proposal for transforming clustering schemes between different levels of granularity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aditya Prakash, B., Sridharan, A., Seshadri, M., Machiraju, S., Faloutsos, C.: EigenSpokes: Surprising patterns and scalable community chipping in large graphs. In: Zaki, M.J., Yu, J.X., Ravindran, B., Pudi, V. (eds.) PAKDD 2010. LNCS, vol. 6119, pp. 435–448. Springer, Heidelberg (2010), http://www.cs.cmu.edu/badityap/papers/eigenspokes-pakdd10.pdf

    Chapter  Google Scholar 

  2. BBC News, Over 5 billion mobile phone connections worldwide (2010), http://www.bbc.co.uk/news/10569081

  3. Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intelligence 1, 224–227 (1979)

    Article  Google Scholar 

  4. Eagle, N. (2010), The Reality Mining Data README, http://eprom.mit.edu/data/RealityMining_ReadMe.pdf

  5. Eagle, N., Pentland, A., Lazer, D.: Inferring Social Network Structure using Mobile Phone Data. Proc. of the National Academy of Sciences 106(36), 15274–15278 (2009)

    Article  Google Scholar 

  6. Farrugia, M., Quigley, A.: Cell phone Mini Challenge: Node-link animation award animating multivariate dynamic social networks. In: IEEE Symposium on Visual Analytics Science and Technology, VAST 2008, pp. 215–216 (2008)

    Google Scholar 

  7. Hohwald, H., Frías-Martínez, E., Oliver, N.: User modeling for telecommunication applications: Experiences and practical implications. In: De Bra, P., Kobsa, A., Chin, D. (eds.) UMAP 2010. LNCS, vol. 6075, pp. 327–338. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Joshi, A., Krishnapuram, R.: Robust Fuzzy Clustering Methods to Support Web Mining. In: Proceedings of the Workshop on Data Mining and Knowledge Discovery, SIGMOD 1998, pp. 15/1–15/8 (1998)

    Google Scholar 

  9. Lingras, P.: Unsupervised Rough Set Classification using GAs. Journal Of Intelligent Information Systems 16(3), 215–228 (2001)

    Article  MATH  Google Scholar 

  10. Lingras, P.: Rough set clustering for Web mining. In: Proceedings of 2002 IEEE International Conference on Fuzzy Systems (2002)

    Google Scholar 

  11. Lingras, P., West, C.: Interval Set Clustering of Web Users with Rough K-means. Journal of Intelligent Information Systems 23(1), 5–16 (2004)

    Article  MATH  Google Scholar 

  12. Lingras, P., Hogo, M., Snorek, M., Leonard, B.: Clustering Supermarket Customers Using Rough Set Based Kohonen Networks. In: Zhong, N., Raś, Z.W., Tsumoto, S., Suzuki, E. (eds.) ISMIS 2003. LNCS (LNAI), vol. 2871, pp. 169–173. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  13. Lingras, P., Hogo, M., Snorek, M.: Interval Set Clustering of Web Users using Modified Kohonen Self-Organizing Maps based on the Properties of Rough Sets. Web Intelligence and Agent Systems: An International Journal 2(3), 213–217 (2004)

    Google Scholar 

  14. MacQueen, J.: Some Methods fir Classification and Analysis of Multivariate Observations. In: Proceedings of Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297 (1967)

    Google Scholar 

  15. Nanavati, A.A., Gurumurthy, S., Das, G., Chakraborty, D., Dasgupta, K., Mukherjea, S., Joshi, A.: On the structural properties of massive telecom call graphs: findings and implications. In: Proc. of 15th ACM Conference on Information and Knowledge Management, pp. 435–444 (2006)

    Google Scholar 

  16. Peters, J.F., Skowron, A., Suraj, Z., Rzasa, W., Borkowski, M.: Clustering: A rough set approach to constructing information granules. In: Proceedings of 6th International Conference Soft Computing and Distributed Processing on SCDP 2002, pp. 57–61 (2002)

    Google Scholar 

  17. Seshadri, M., Machiraju, S., Sridharan, A., Bolot, J., Faloutsos, C., Leskovec, J.: Mobile Call Graphs: Beyond Power-Law and Lognormal Distributions. In: Proc. of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2008), http://cs.stanford.edu/people/jure/pubs/dpln-kdd08.pdf

  18. Skowron, A., Stepaniuk, J.: Information granules in distributed environment. In: Zhong, N., Skowron, A., Ohsuga, S. (eds.) RSFDGrC 1999. LNCS (LNAI), vol. 1711, pp. 357–366. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  19. R, The R Project for Statistical Computing (2010), http://www.r-project.org

  20. Ye, Q., Zhu, T., Hu, D., Wu, B., Du, N., Wang, B.: Cell phone mini challenge award: Social network accuracy - exploring temporal communication in mobile call graphs. In: IEEE Symposium on Visual Analytics Science and Technology, VAST 2008, pp. 207–208 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lingras, P., Bhalchandra, P., Mekewad, S., Rathod, R., Khamitkar, S. (2011). Comparing Clustering Schemes at Two Levels of Granularity for Mobile Call Mining. In: Yao, J., Ramanna, S., Wang, G., Suraj, Z. (eds) Rough Sets and Knowledge Technology. RSKT 2011. Lecture Notes in Computer Science(), vol 6954. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24425-4_87

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24425-4_87

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24424-7

  • Online ISBN: 978-3-642-24425-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics