[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Automatically Determining the Number of Clusters Using Decision-Theoretic Rough Set

  • Conference paper
Rough Sets and Knowledge Technology (RSKT 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6954))

Included in the following conference series:

Abstract

Clustering provides a common means of identifying structure in complex data, and there is renewed interest in clustering as a tool for the analysis of large data sets in many fields. A fundamental and difficult problem in cluster analysis is how many clusters are appropriate for the description of a given system. The objective of this paper is to develop a method for automatically determining the number of clusters. The method firstly proposes a new clustering validity evaluation function based on the extended decision-theoretic rough set model. Then a hierarchical clustering algorithm is proposed and some conclusions are obtained in the validation of the algorithm. Experimental results show that the new clustering method can stop at the perfect number of clusters automatically and validate the change laws of the clustering validity evaluation function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chen, L.F., Jiang, Q.S., Wang, S.R.: A Hierarchical Method for Determining the Number of Clusters. Journal of Software 19(1), 62–72 (2008) (in Chinese)

    Article  MATH  Google Scholar 

  2. Gordon, A.D.: Classification. Chapman & Hall/CRC, Lundon (1999)

    MATH  Google Scholar 

  3. Halkidi, M., Batistakis, Y., Vazirgiannis, M.: Clustering validity checking methods: part II. ACM SIGMOD Record Archive 31(3), 19–27 (2002)

    Article  MATH  Google Scholar 

  4. Herbert, J.P., Yao, J.T.: Criteria for Choosing a Rough Set Model. Journal of Computers and Mathematics with Applications 57(6), 908–918 (2009)

    Article  MATH  Google Scholar 

  5. Kapp, A.V., Tibshirani, R.: Are clusters found in one dataset present in another dataset? Biostatistics 8(1), 9 (2007)

    Article  MATH  Google Scholar 

  6. Lingras, P., Chen, M., Miao, D.Q.: Rough cluster quality index based on decision theory. IEEE Transactions on Knowledge and Data Engineering 21(7), 1014–1026 (2009)

    Article  Google Scholar 

  7. Liu, D., Yao, Y.Y., Li, T.R.: Three-way investment decisions with decision-theoretic rough sets. International Journal of Computational Intelligence Systems 4(1), 66–74 (2011)

    Article  Google Scholar 

  8. Şerban, G., Câmpan, A.: Hierarchical adaptive clustering. Informatica 19(1), 101–112 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Still, S., Bialek, W.: How many clusters? an information-theoretic perspective. Neural Computation 16(12), 2483–2506 (2004)

    Article  MATH  Google Scholar 

  10. Yao, Y.Y., Wong, S.K.M.: A decision theoretic framework for approximating concepts. International Journal of Man-Machine Studies 37(6), 793–809 (1992)

    Article  Google Scholar 

  11. Yao, Y.Y.: Three-way decisions with probabilistic rough sets. Information Sciences 180(3), 341–353 (2010)

    Article  MathSciNet  Google Scholar 

  12. UCIrvine Machine Learning Repository, http://archive.ics.uci.edu/ml/

  13. Zhou, X.Z., Li, H.X.: A multi-view decision model based on decision-theoretic rough set. In: Wen, P., Li, Y., Polkowski, L., Yao, Y., Tsumoto, S., Wang, G. (eds.) RSKT 2009. LNCS, vol. 5589, pp. 650–657. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yu, H., Liu, Z., Wang, G. (2011). Automatically Determining the Number of Clusters Using Decision-Theoretic Rough Set. In: Yao, J., Ramanna, S., Wang, G., Suraj, Z. (eds) Rough Sets and Knowledge Technology. RSKT 2011. Lecture Notes in Computer Science(), vol 6954. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24425-4_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24425-4_65

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24424-7

  • Online ISBN: 978-3-642-24425-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics