Abstract
The original form of the Rough c-means algorithm does not distinguish between data points in the boundary area. This paper presents an extended Rough c-means algorithm in which the distinction between data points in the boundary area is captured and used in the clustering procedure. Experimental results indicate that the proposed algorithm can yield more desirable clustering results in comparison to the original form of the Rough c-means algorithm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Mirkin, B.: Mathematical Classification and Clustering. Kluwer Academic Publishers, Boston (1996)
Pawlak, Z.: Rough Sets–Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)
Pawlak, Z.: Some Issues on Rough Sets. Transactions on Rough Sets I, 1–58 (2004)
Tou, J.T., Gonzalez, R.C.: Pattern Recognition Principles. Addison-Wesley, London (1974)
Lingras, P., West, C.: Interval Set Clustering of Web Users with Rough k-Means. J. Intell. Inform. Syst. 23(1), 5–16 (2004)
Mitra, S.: An Evolutionary Rough Partitive Clustering. Pattern Recognition Letter 25(12), 1439–1449 (2004)
Mitra, S., Banka, H., Pedrycz, W.: Rough-Fuzzy Collaborative Clustering. IEEE Trans. Systems Man Cybernet., Part-B 36(4), 795–805 (2006)
Peters, G.: Some Refinements of Rough k-Means Clustering. Pattern Recognition 39(10), 1481–1491 (2006)
Mitra, S., Pedrycz, W., Barman, B.: Shadowed c-Means: Integrating Fuzzy and Rough Clustering. Pattern Recognition 43(4), 1282–1291 (2010)
Wang, G.-Y.: Rough Set Theory and Knowledge Acquisition. Xi’an Jiaotong University Press, Xi’an (2001)
Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum, New York (1981)
Bezdek, J.C., Pal, N.R.: Some New Indexes for Cluster Validity. IEEE Trans. Systems Man Cybernet., Part-B 28(3), 301–315 (1998)
Hettich, S., Blake, C.L., Merz, C.J.: UCI Repository of Machine Learning Databases, http://archive.ics.uci.edu/ml/datasets.html
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Li, F., Liu, Q. (2011). An Extension to Rough c-Means Clustering. In: Yao, J., Ramanna, S., Wang, G., Suraj, Z. (eds) Rough Sets and Knowledge Technology. RSKT 2011. Lecture Notes in Computer Science(), vol 6954. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24425-4_29
Download citation
DOI: https://doi.org/10.1007/978-3-642-24425-4_29
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-24424-7
Online ISBN: 978-3-642-24425-4
eBook Packages: Computer ScienceComputer Science (R0)