[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Incremental Learning in AttributeNets with Dynamic Reduct and IQuickReduct

  • Conference paper
Rough Sets and Knowledge Technology (RSKT 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6954))

Included in the following conference series:

  • 1892 Accesses

Abstract

Incremental learning is becoming more essential in the real world problems in which a decision system is being updated frequently. AttributeNets is a classifier whose representation allows updating the classifier when new data is added incrementally. In this paper the impact of reduct on the performance of AttributeNets as an Incremental Classifier is investigated. This philosophy has been demonstrated by adopting two varieties of reducts, namely dynamic reduct and IQuickReduct. These reducts were used to study the capability of AttributeNets for classification with reduced attributes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Banerjee, M., Mitra, S., Pal, S.K.: Rough Fuzzy MLP Knowledge Encoding and Classificication. IEEE Transactions on Neural Networks 9(6), 1203–1216 (1998)

    Article  Google Scholar 

  2. Bazan, J., Skowron, A., Synak, P.: Dynamic reducts as a tool for extracting laws from decision tables. In: Raś, Z.W., Zemankova, M. (eds.) ISMIS 1994. LNCS(LNAI), vol. 869, pp. 346–355. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  3. Chouchoulas, A., Shen, Q.: Rough Set-Aided Keyword Reduction for Text Categorization. Applied Artificial Intelligence 15(9), 843–873 (2001)

    Article  Google Scholar 

  4. Enembreck, F., Barths, J.P.: ELA: A New Approach for Learning Agents. Journal of Autonomous Agents and Multi-Agent Systems 3(10), 215–248 (2005)

    Article  Google Scholar 

  5. Godin, R.: Incremental Concept Formation Algorithm Based on Galois (Concept) Lattices. Computational Intelligence 11(2), 246–267 (1995)

    Article  Google Scholar 

  6. Wu, H., Wang, Y., Huai, X.: AttributeNets: An Incremental Learning Method for Interpretable Classification. In: Zhou, Z.-H., Li, H., Yang, Q. (eds.) PAKDD 2007. LNCS (LNAI), vol. 4426, pp. 940–947. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Minz, S., Jain, R.: Rough Set based Decision Tree Model for Classification. In: Kambayashi, Y., Mohania, M., Wöß, W. (eds.) DaWaK 2003. LNCS, vol. 2737, pp. 172–181. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  8. Mitchell, T.: Machine Learning. McGraw-Hill, New York (1997)

    MATH  Google Scholar 

  9. Nguyen, H.S., Skowron, A.: Boolean Reasoning for feature extracction problems. In: Raś, Z.W., Skowron, A. (eds.) ISMIS 1997. LNCS, vol. 1325, pp. 117–126. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  10. Pawlak, Z.: Rough Sets Theoretical Aspects and Reasoning about Data. Kluwer Academic Publication, Dordrecht (1991)

    MATH  Google Scholar 

  11. Crisp datasets collection, http://users.aber.ac.uk/rkj/datasets/index.php

  12. Rough Set Exploration System, http://logic.mimuw.edu.pl/~rses/start.html

  13. Sai Prasad, P.S.V.S., Raghavendra Rao, C.: IQuickReduct: An Improvement to Quick Reduct Algorithm. In: Sakai, H., Chakraborty, M.K., Hassanien, A.E., Ślęzak, D., Zhu, W. (eds.) RSFDGrC 2009. LNCS, vol. 5908, pp. 152–159. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. UCI machine learning repository, http://archive.ics.uci.edu/ml/

  15. Utgoff, P.E.: Incremental Induction of Decision Trees. Machine Learning 4, 161–186 (1989)

    Article  Google Scholar 

  16. Utgoff, P.E.: An Improved Algorithm for Incremental Induction of Decision Trees. In: Proceedings of the Eleventh International Conference of Machine Learning, pp. 318–325 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Prasad, P.S.V.S.S., Bindu, K.H., Rao, C.R. (2011). Incremental Learning in AttributeNets with Dynamic Reduct and IQuickReduct. In: Yao, J., Ramanna, S., Wang, G., Suraj, Z. (eds) Rough Sets and Knowledge Technology. RSKT 2011. Lecture Notes in Computer Science(), vol 6954. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24425-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24425-4_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24424-7

  • Online ISBN: 978-3-642-24425-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics