Abstract
Incremental learning is becoming more essential in the real world problems in which a decision system is being updated frequently. AttributeNets is a classifier whose representation allows updating the classifier when new data is added incrementally. In this paper the impact of reduct on the performance of AttributeNets as an Incremental Classifier is investigated. This philosophy has been demonstrated by adopting two varieties of reducts, namely dynamic reduct and IQuickReduct. These reducts were used to study the capability of AttributeNets for classification with reduced attributes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Banerjee, M., Mitra, S., Pal, S.K.: Rough Fuzzy MLP Knowledge Encoding and Classificication. IEEE Transactions on Neural Networks 9(6), 1203–1216 (1998)
Bazan, J., Skowron, A., Synak, P.: Dynamic reducts as a tool for extracting laws from decision tables. In: Raś, Z.W., Zemankova, M. (eds.) ISMIS 1994. LNCS(LNAI), vol. 869, pp. 346–355. Springer, Heidelberg (1994)
Chouchoulas, A., Shen, Q.: Rough Set-Aided Keyword Reduction for Text Categorization. Applied Artificial Intelligence 15(9), 843–873 (2001)
Enembreck, F., Barths, J.P.: ELA: A New Approach for Learning Agents. Journal of Autonomous Agents and Multi-Agent Systems 3(10), 215–248 (2005)
Godin, R.: Incremental Concept Formation Algorithm Based on Galois (Concept) Lattices. Computational Intelligence 11(2), 246–267 (1995)
Wu, H., Wang, Y., Huai, X.: AttributeNets: An Incremental Learning Method for Interpretable Classification. In: Zhou, Z.-H., Li, H., Yang, Q. (eds.) PAKDD 2007. LNCS (LNAI), vol. 4426, pp. 940–947. Springer, Heidelberg (2007)
Minz, S., Jain, R.: Rough Set based Decision Tree Model for Classification. In: Kambayashi, Y., Mohania, M., Wöß, W. (eds.) DaWaK 2003. LNCS, vol. 2737, pp. 172–181. Springer, Heidelberg (2003)
Mitchell, T.: Machine Learning. McGraw-Hill, New York (1997)
Nguyen, H.S., Skowron, A.: Boolean Reasoning for feature extracction problems. In: Raś, Z.W., Skowron, A. (eds.) ISMIS 1997. LNCS, vol. 1325, pp. 117–126. Springer, Heidelberg (1997)
Pawlak, Z.: Rough Sets Theoretical Aspects and Reasoning about Data. Kluwer Academic Publication, Dordrecht (1991)
Crisp datasets collection, http://users.aber.ac.uk/rkj/datasets/index.php
Rough Set Exploration System, http://logic.mimuw.edu.pl/~rses/start.html
Sai Prasad, P.S.V.S., Raghavendra Rao, C.: IQuickReduct: An Improvement to Quick Reduct Algorithm. In: Sakai, H., Chakraborty, M.K., Hassanien, A.E., Ślęzak, D., Zhu, W. (eds.) RSFDGrC 2009. LNCS, vol. 5908, pp. 152–159. Springer, Heidelberg (2009)
UCI machine learning repository, http://archive.ics.uci.edu/ml/
Utgoff, P.E.: Incremental Induction of Decision Trees. Machine Learning 4, 161–186 (1989)
Utgoff, P.E.: An Improved Algorithm for Incremental Induction of Decision Trees. In: Proceedings of the Eleventh International Conference of Machine Learning, pp. 318–325 (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Prasad, P.S.V.S.S., Bindu, K.H., Rao, C.R. (2011). Incremental Learning in AttributeNets with Dynamic Reduct and IQuickReduct. In: Yao, J., Ramanna, S., Wang, G., Suraj, Z. (eds) Rough Sets and Knowledge Technology. RSKT 2011. Lecture Notes in Computer Science(), vol 6954. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24425-4_27
Download citation
DOI: https://doi.org/10.1007/978-3-642-24425-4_27
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-24424-7
Online ISBN: 978-3-642-24425-4
eBook Packages: Computer ScienceComputer Science (R0)