[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Transversal and Function Matroidal Structures of Covering-Based Rough Sets

  • Conference paper
Rough Sets and Knowledge Technology (RSKT 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6954))

Included in the following conference series:

Abstract

In many real world applications, information blocks form a covering of a universe. Covering-based rough set theory has been proposed to deal with this type of information. It is more general and complex than classical rough set theory, hence there is much need to develop sophisticated structures to characterize covering-based rough sets. Matroids are important tools for describing graphs and linear independence of matrix theory. This paper establishes two matroidal structures of covering-based rough sets. Firstly, the transversal matroidal structure of a family of subsets of a universe is constructed. We also prove that the family of subsets of a universe is a covering if and only if the constructed transversal matroid is a normal one. Secondly, the function matroidal structure is constructed through the upper approximation number. Moreover, the relationships between the two matroidal structures are studied. Specifically, when a covering of a universe is a partition, these two matroidal structures coincide with each other.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zhu, W.: Relationship among basic concepts in covering-based rough sets. Information Sciences 17, 2478–2486 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Zhu, W., Wang, F.: Reduction and axiomization of covering generalized rough sets. Information Sciences 152, 217–230 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bartol, W., Miro, J., Pioro, K., Rossello, F.: On the coverings by tolerance classes. Information Sciences 166, 193–211 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bianucci, D., Cattaneo, G., Ciucci, D.: Entropies and co-entropies of coverings with application to incomplete information systems. Fundamenta Informaticae 75, 77–105 (2007)

    MathSciNet  MATH  Google Scholar 

  5. Chen, D., Wang, C., Hu, Q.: A new approach to attribute reduction of consistent and inconsistent covering decision systems with covering rough sets. Information Sciences 177, 3500–3518 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Min, F., He, H., Qian, Y., Zhu, W.: Test-cost-sensitive attribute reduction. In: To Appear in Information Sciences (2011)

    Google Scholar 

  7. Yao, Y., Zhao, Y.: Attribute reduction in decision-theoretic rough set models. Information Sciences 178, 3356–3373 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hu, Q., Pan, W., An, S., Ma, P., Wei, J.: An efficient gene selection technique for cancer recognition based on neighborhood mutual information. International Journal of Machine Learning and Cybernetics 1, 63–74 (2011)

    Article  Google Scholar 

  9. Li, F., Yin, Y.: Approaches to knowledge reduction of covering decision systems based on information theory. Information Sciences 179, 1694–1704 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Qian, Y., Liang, J., Pedrycz, W., Dang, C.: Positive approximation: An accelerator for attribute reduction in rough set theory. Artificial Intelligence 174, 597–618 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Wu, W.: Attribute reduction based on evidence theory in incomplete decision systems. Information Sciences 178, 1355–1371 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hu, Q., Yu, D., Liu, J., Wu, C.: Neighborhood rough set based heterogeneous feature subset selection. Information Sciences 178, 3577–3594 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wang, S., Min, F., Zhu, W.: Quantitative analysis for covering-based rough sets on boolean algebra. Submitted to Information Sciences (2011)

    Google Scholar 

  14. Wang, S., Zhu, W.: Matroidal structure of covering-based rough sets through the upper approximation number. To Appear in International Journal of Granular Computing, Rough Sets and Intelligent Systems (2011)

    Google Scholar 

  15. Wang, S., Zhu, W., Zhu, P.: Abstract interdependency in rough sets. Journal of Nanjing University 46, 507–510 (2010) (in Chinese)

    MathSciNet  MATH  Google Scholar 

  16. Zhu, W., Wang, S.: Matroidal approaches to generalized rough sets based on relations. To Appear in International Journal of Machine Learning and Cybernetics (2011)

    Google Scholar 

  17. Kondo, M.: On the structure of generalized rough sets. Information Sciences 176, 589–600 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, J.: Topological methods on the theory of covering generalized rough sets. Pattern Recognition and Artificial Intelligence 17, 7–10 (2004) (in Chinese)

    Google Scholar 

  19. Zhu, W.: Topological approaches to covering rough sets. Information Sciences 177, 1499–1508 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Qin, K., Pei, Z.: On the topological properties of fuzzy rough sets. Fuzzy Sets and Systems 151, 601–613 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Davvaz, B.: Roughness based on fuzzy ideals. Information Sciences 176, 2417–2437 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Deng, T., Chen, Y., Xu, W., Dai, Q.: A novel approach to fuzzy rough sets based on a fuzzy covering. Information Sciences 177, 2308–2326 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu, G., Sai, Y.: Invertible approximation operators of generalized rough sets and fuzzy rough sets. Information Sciences 180, 2221–2229 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hong, T., Tseng, L., Chien, B.: Mining from incomplete quantitative data by fuzzy rough sets. Expert Systems with Applications 37, 2644–2653 (2010)

    Article  Google Scholar 

  25. Wang, S., Zhu, P., Zhu, W.: Structure of covering-based rough sets. International Journal of Mathematical and Computer Sciences 6, 147–150 (2010)

    Google Scholar 

  26. Yao, Y.: Constructive and algebraic methods of theory of rough sets. Information Sciences 109, 21–47 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yao, Y., Zhang, J.P.: Interpreting fuzzy membership functions in the theory of rough sets. In: Ziarko, W.P., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 82–89. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  28. Zhu, W.: Relationship between generalized rough sets based on binary relation and covering. Information Sciences 179, 210–225 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhu, W., Wang, F.: On three types of covering rough sets. IEEE Transactions on Knowledge and Data Engineering 19, 1131–1144 (2007)

    Article  Google Scholar 

  30. Zhu, F., Wang, F.: Some results on covering generalized rough sets. Pattern Recognition and Artificial Intelligence 15, 6–13 (2002)

    Google Scholar 

  31. Lai, H.: Matroid theory. Higher Education Press (2001)

    Google Scholar 

  32. Li, Y.: Some researches on fuzzy matroids. PhD thesis, Shaanxi Normal University (2007)

    Google Scholar 

  33. Mao, H.: The relation between matroid and concept lattice. Advance in Mathematics 35, 361–365 (2006)

    MathSciNet  Google Scholar 

  34. Maffioli, F., Salvi, N.Z.: On some properties of base-matroid. Discrete Applied Mathematics 154, 1401–1407 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Jones, S., McGuinness, S.: Defining matroids through sequential selection. European Journal of Combinatorics 28, 469–480 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lawler, E.L.: Combinatorial optimization: networks and matroids. Holt, Rinehart and Winston, New York (2001)

    MATH  Google Scholar 

  37. Edmonds, J.: Matroids and the greedy algorithm. Mathematical Programming 1, 127–136 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  38. Qian, Y., Liang, J., Li, D., Zhang, H., Dang, C.: Measures for evaluating the decision performance of a decision table in rough set theory. Information Sciences 178, 181–202 (2008)

    Article  MATH  Google Scholar 

  39. Min, F., Liu, Q.: A hierarchical model for test-cost-sensitive decision systems. Information Sciences 179, 2442–2452 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. Min, F., Liu, Q., Fang, C.: Rough sets approach to symbolic value partition. International Journal of Approximate Reasoning 49, 689–700 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, S., Zhu, W., Min, F. (2011). Transversal and Function Matroidal Structures of Covering-Based Rough Sets. In: Yao, J., Ramanna, S., Wang, G., Suraj, Z. (eds) Rough Sets and Knowledge Technology. RSKT 2011. Lecture Notes in Computer Science(), vol 6954. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24425-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24425-4_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24424-7

  • Online ISBN: 978-3-642-24425-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics