[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

The Perceptron with Dynamic Margin

  • Conference paper
Algorithmic Learning Theory (ALT 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6925))

Included in the following conference series:

  • 3050 Accesses

Abstract

The classical perceptron rule provides a varying upper bound on the maximum margin, namely the length of the current weight vector divided by the total number of updates up to that time. Requiring that the perceptron updates its internal state whenever the normalized margin of a pattern is found not to exceed a certain fraction of this dynamic upper bound we construct a new approximate maximum margin classifier called the perceptron with dynamic margin (PDM). We demonstrate that PDM converges in a finite number of steps and derive an upper bound on them. We also compare experimentally PDM with other perceptron-like algorithms and support vector machines on hard margin tasks involving linear kernels which are equivalent to 2-norm soft margin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Blum, A.: Lectures on machine learning theory. Carnegie Mellon University, USA, http://www.cs.cmu.edu/~avrim/ML09/lect0126.pdf

  2. Cristianini, N., Shawe-Taylor, J.: An introduction to support vector machines Cambridge. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  3. Duda, R.O., Hart, P.E.: Pattern classsification and scene analysis. Wiley, Chichester (1973)

    MATH  Google Scholar 

  4. Freund, Y., Shapire, R.E.: Large margin classification using the perceptron algorithm. Machine Learning 37(3), 277–296 (1999)

    Article  MATH  Google Scholar 

  5. Gentile, C.: A new approximate maximal margin classification algorithm. Journal of Machine Learning Research 2, 213–242 (2001)

    MathSciNet  MATH  Google Scholar 

  6. Joachims, T.: Making large-scale SVM learning practical. In: Advances in Kernel Methods-Support Vector Learning. MIT Press, Cambridge (1999)

    Google Scholar 

  7. Joachims, T.: Training linear SVMs in linear time. In: KDD, pp. 217–226 (2006)

    Google Scholar 

  8. Hsieh, C.-J., Chang, K.-W., Lin, C.-J., Keerthi, S.S., Sundararajan, S.: A dual coordinate descent method for large-scale linear SVM. In: ICML, pp. 408–415 (2008)

    Google Scholar 

  9. Ishibashi, K., Hatano, K., Takeda, M.: Online learning of approximate maximum p-norm margin classifiers with bias. In: COLT, pp. 69–80 (2008)

    Google Scholar 

  10. Krauth, W., Mézard, M.: Learning algorithms with optimal stability in neural networks. Journal of Physics A20, L745–L752 (1987)

    Google Scholar 

  11. Li, Y., Long, P.: The relaxed online maximum margin algorithm. Machine Learning 46(1-3), 361–387 (2002)

    Article  MATH  Google Scholar 

  12. Novikoff, A.B.J.: On convergence proofs on perceptrons. In: Proc. Symp. Math. Theory Automata, vol. 12, pp. 615–622 (1962)

    Google Scholar 

  13. Panagiotakopoulos, C., Tsampouka, P.: The margin perceptron with unlearning. In: ICML, pp. 855–862 (2010)

    Google Scholar 

  14. Panagiotakopoulos, C., Tsampouka, P.: The margitron: A generalized perceptron with margin. IEEE Transactions on Neural Networks 22(3), 395–407 (2011)

    Article  MATH  Google Scholar 

  15. Platt, J.C.: Sequential minimal optimization: A fast algorithm for training support vector machines. Microsoft Res. Redmond WA, Tech. Rep. MSR-TR-98-14 (1998)

    Google Scholar 

  16. Rosenblatt, F.: The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review 65(6), 386–408 (1958)

    Article  Google Scholar 

  17. Tsampouka, P., Shawe-Taylor, J.: Perceptron-like large margin classifiers. Tech. Rep., ECS, University of Southampton, UK (2005), Obtainable from, http://eprints.ecs.soton.ac.uk/10657

  18. Tsampouka, P., Shawe-Taylor, J.: Analysis of generic perceptron-like large margin classifiers. In: Gama, J., Camacho, R., Brazdil, P.B., Jorge, A.M., Torgo, L. (eds.) ECML 2005. LNCS (LNAI), vol. 3720, pp. 750–758. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  19. Tsampouka, P., Shawe-Taylor, J.: Constant rate approximate maximum margin algorithms. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 437–448. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  20. Tsampouka, P., Shawe-Taylor, J.: Approximate maximum margin algorithms with rules controlled by the number of mistakes. In: ICML, pp. 903–910 (2007)

    Google Scholar 

  21. Vapnik, V.: Statistical learning theory. Wiley, Chichester (1998)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Panagiotakopoulos, C., Tsampouka, P. (2011). The Perceptron with Dynamic Margin. In: Kivinen, J., Szepesvári, C., Ukkonen, E., Zeugmann, T. (eds) Algorithmic Learning Theory. ALT 2011. Lecture Notes in Computer Science(), vol 6925. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24412-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24412-4_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24411-7

  • Online ISBN: 978-3-642-24412-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics