[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Fast Marching for Robust Surface Segmentation

  • Conference paper
Photogrammetric Image Analysis (PIA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6952))

Included in the following conference series:

Abstract

We propose a surface segmentation method based on Fast Marching Farthest Point Sampling designed for noisy, visually reconstructed point clouds or laser range data. Adjusting the distance metric between neighboring vertices we obtain robust, edge-preserving segmentations based on local curvature. We formulate a cost function given a segmentation in terms of a description length to be minimized. An incremental-decremental segmentation procedure approximates a global optimum of the cost function and prevents from under- as well as strong over-segmentation. We demonstrate the proposed method on various synthetic and real-world data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Attene, M., Falcidieno, B., Spagnuolo, M.: Hierarchical Mesh Segmentation Based on Fitting Primitives. Visual Comput. 22(3), 181–193 (2006)

    Article  Google Scholar 

  • Beucher, S., Lantuéjoul, C.: Use of Watersheds in Contour Detection. In: Int. Workshop on Image Processing, Real-time Edge and Motion Detection/Estimation, pp. 17–21 (1979)

    Google Scholar 

  • Croux, C., Haesbroeck, G., Rousseeuw, P.J.: Location Adjustment for the Minimum Volume Ellipsoid Estimator. Stat. Comput. 12(3), 191–200 (2002)

    Article  MathSciNet  Google Scholar 

  • Eldar, Y., Lindenbaum, M., Porat, M., Zeevi, Y.Y.: The Farthest Point Strategy for Progressive Image Sampling. IEEE T. Image Process. 6(9), 1305–1315 (1997)

    Article  Google Scholar 

  • Förstner, W.: Image Analysis Techniques for Digital Photogrammetry. Photogrammetrische Woche, 205–221 (1989)

    Google Scholar 

  • Furukawa, Y., Ponce, J.: Accurate, Dense, and Robust Multi-view Stereopsis. In: CVPR, pp. 1362–1376 (2007)

    Google Scholar 

  • Garland, M., Willmott, A., Heckbert, P.S.: Hierarchical Face Clustering on Polygonal Surfaces. In: SIGGRAPH, pp. 49–58 (2001)

    Google Scholar 

  • Keller, F., Sänger, J.: Automatisierte Generierung von historischen 4D-Stadtmodellen für die Darstellung innerhalb der Google Earth Engine am Beispiel der Freien und Hansestadt Hamburg. Master thesis, HafenCity University Hamburg (2010)

    Google Scholar 

  • Kimmel, R., Sethian, J.A.: Computing Geodesic Paths on Manifolds. P. Natl. Acad. Sci. USA 95(15), 8431–8435 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Leclerc, Y.G.: Constructing Simple Stable Descriptions for Image Partitioning. Int. J. Comput. Vision 3(1), 73–102 (1989)

    Article  Google Scholar 

  • Mangan, A.P., Whitaker, R.T.: Partitioning 3D Surface Meshes using Watershed Segmentation. IEEE T. Vis. Comput. Gr. 5(4), 308–321 (1999)

    Article  Google Scholar 

  • Moenning, C., Dodgson, N.A.: Fast Marching Farthest Point Sampling. In: Eurographics (2003)

    Google Scholar 

  • Page, D.L., Koschan, A.F., Abidi, M.A.: Perception-based 3D Triangle Mesh Segmentation Using Fast Marching Watersheds. In: CVPR, pp. 27–32 (2003)

    Google Scholar 

  • Peyré, G., Cohen, L.: Surface Segmentation Using Geodesic Centroidal Tesselation. In: 3DPVT, pp. 995–1002 (2004)

    Google Scholar 

  • Peyré, G., Cohen, L.: Geodesic Remeshing Using Front Propagation. Int. J. Comput. Vision 69(1), 145–156 (2006)

    Article  Google Scholar 

  • Sethian, J.A.: A Fast Marching Level Set Method for Monotonically Advancing Fronts. P. Natl. Acad. Sci. USA 93(4), 1591–1595 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Snavely, N., Seitz, S.M., Szeliski, R.: Photo Tourism: Exploring Photo Collections in 3D. ACM T. Graphic, 835–846 (2006)

    Google Scholar 

  • Xu, M., Thompson, P.M., Toga, A.W.: An Adaptive Level Set Segmentation on a Triangulated Mesh. IEEE T. Med. Imaging 23(2), 191–201 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schindler, F., Förstner, W. (2011). Fast Marching for Robust Surface Segmentation. In: Stilla, U., Rottensteiner, F., Mayer, H., Jutzi, B., Butenuth, M. (eds) Photogrammetric Image Analysis. PIA 2011. Lecture Notes in Computer Science, vol 6952. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24393-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24393-6_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24392-9

  • Online ISBN: 978-3-642-24393-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics