Abstract
We propose a surface segmentation method based on Fast Marching Farthest Point Sampling designed for noisy, visually reconstructed point clouds or laser range data. Adjusting the distance metric between neighboring vertices we obtain robust, edge-preserving segmentations based on local curvature. We formulate a cost function given a segmentation in terms of a description length to be minimized. An incremental-decremental segmentation procedure approximates a global optimum of the cost function and prevents from under- as well as strong over-segmentation. We demonstrate the proposed method on various synthetic and real-world data sets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Attene, M., Falcidieno, B., Spagnuolo, M.: Hierarchical Mesh Segmentation Based on Fitting Primitives. Visual Comput. 22(3), 181–193 (2006)
Beucher, S., Lantuéjoul, C.: Use of Watersheds in Contour Detection. In: Int. Workshop on Image Processing, Real-time Edge and Motion Detection/Estimation, pp. 17–21 (1979)
Croux, C., Haesbroeck, G., Rousseeuw, P.J.: Location Adjustment for the Minimum Volume Ellipsoid Estimator. Stat. Comput. 12(3), 191–200 (2002)
Eldar, Y., Lindenbaum, M., Porat, M., Zeevi, Y.Y.: The Farthest Point Strategy for Progressive Image Sampling. IEEE T. Image Process. 6(9), 1305–1315 (1997)
Förstner, W.: Image Analysis Techniques for Digital Photogrammetry. Photogrammetrische Woche, 205–221 (1989)
Furukawa, Y., Ponce, J.: Accurate, Dense, and Robust Multi-view Stereopsis. In: CVPR, pp. 1362–1376 (2007)
Garland, M., Willmott, A., Heckbert, P.S.: Hierarchical Face Clustering on Polygonal Surfaces. In: SIGGRAPH, pp. 49–58 (2001)
Keller, F., Sänger, J.: Automatisierte Generierung von historischen 4D-Stadtmodellen für die Darstellung innerhalb der Google Earth Engine am Beispiel der Freien und Hansestadt Hamburg. Master thesis, HafenCity University Hamburg (2010)
Kimmel, R., Sethian, J.A.: Computing Geodesic Paths on Manifolds. P. Natl. Acad. Sci. USA 95(15), 8431–8435 (1998)
Leclerc, Y.G.: Constructing Simple Stable Descriptions for Image Partitioning. Int. J. Comput. Vision 3(1), 73–102 (1989)
Mangan, A.P., Whitaker, R.T.: Partitioning 3D Surface Meshes using Watershed Segmentation. IEEE T. Vis. Comput. Gr. 5(4), 308–321 (1999)
Moenning, C., Dodgson, N.A.: Fast Marching Farthest Point Sampling. In: Eurographics (2003)
Page, D.L., Koschan, A.F., Abidi, M.A.: Perception-based 3D Triangle Mesh Segmentation Using Fast Marching Watersheds. In: CVPR, pp. 27–32 (2003)
Peyré, G., Cohen, L.: Surface Segmentation Using Geodesic Centroidal Tesselation. In: 3DPVT, pp. 995–1002 (2004)
Peyré, G., Cohen, L.: Geodesic Remeshing Using Front Propagation. Int. J. Comput. Vision 69(1), 145–156 (2006)
Sethian, J.A.: A Fast Marching Level Set Method for Monotonically Advancing Fronts. P. Natl. Acad. Sci. USA 93(4), 1591–1595 (1996)
Snavely, N., Seitz, S.M., Szeliski, R.: Photo Tourism: Exploring Photo Collections in 3D. ACM T. Graphic, 835–846 (2006)
Xu, M., Thompson, P.M., Toga, A.W.: An Adaptive Level Set Segmentation on a Triangulated Mesh. IEEE T. Med. Imaging 23(2), 191–201 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Schindler, F., Förstner, W. (2011). Fast Marching for Robust Surface Segmentation. In: Stilla, U., Rottensteiner, F., Mayer, H., Jutzi, B., Butenuth, M. (eds) Photogrammetric Image Analysis. PIA 2011. Lecture Notes in Computer Science, vol 6952. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24393-6_13
Download citation
DOI: https://doi.org/10.1007/978-3-642-24393-6_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-24392-9
Online ISBN: 978-3-642-24393-6
eBook Packages: Computer ScienceComputer Science (R0)