[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Complexity Analysis of the Backward Coverability Algorithm for VASS

  • Conference paper
Reachability Problems (RP 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6945))

Included in the following conference series:

Abstract

By using the known lower and upper complexity bounds of the coverability problem for vass, we characterize the complexity of the classical backward algorithm for vass coverability, and provide optimal bounds on the size of the symbolic representation it computes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abdulla, P., Čerāns, K., Jonsson, B., Tsay, Y.: General Decidability Theorems for Infinite-State Systems. In: LICS 1996, pp. 313–321. IEEE Computer Society Press, Los Alamitos (1996)

    Google Scholar 

  2. Arnold, A., Latteux, M.: Recursivite et cones rationnels fermes par intersection. Calcolo 15, 381–394 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  3. Delzanno, G., Raskin, J.-F.: Symbolic representation of upward-closed sets. In: Graf, S. (ed.) TACAS 2000. LNCS, vol. 1785, pp. 426–440. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  4. Delzanno, G., Raskin, J.-F., Van Begin, L.: Attacking symbolic state explosion. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 298–310. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  5. Dickson, L.E.: Finiteness of the odd perfect and primitive abundant numbers with n distinct prime factors. American Journal of Mathematics 35, 413–422 (1913)

    Article  MathSciNet  MATH  Google Scholar 

  6. Esparza, J.: Decidability and Complexity of Petri Net Problems - An Introduction. In: Reisig, W., Rozenberg, G. (eds.) APN 1998. LNCS, vol. 1491, pp. 374–428. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  7. Esparza, J., Nielsen, M.: Decidability issues for Petri nets - a survey. Journal of Informatik Processing and Cybernetics 30(3), 143–160 (1994)

    MATH  Google Scholar 

  8. Figueira, D., Figueira, S., Schmitz, S., Schnoebelen, P.: Ackermannian and primitive-recursive bounds with Dickson’s lemma. In: LICS 2011: Proc. 26th Annual IEEE Symp. on Logic in Computer Science, pp. 269–278. IEEE Computer Society Press, Los Alamitos (2011)

    Chapter  Google Scholar 

  9. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theoretical Computer Science 256(1-2), 63–92 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ganty, P., Majumdar, R.: Algorithmic verification of asynchronous programs. CoRR, abs/1011.0551 (2010)

    Google Scholar 

  11. Higman, G.: Ordering by divisibility in abstract algebras. Proceedings of the London Mathematical Society (3) 2(7), 326–336 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  12. Karp, R.M., Miller, R.E.: Parallel program schemata. Journal of Comput. Syst. Sci. 3(2), 147–195 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lipton, R.: The Reachability Problem Requires Exponential Space. Technical Report 62, Yale University (1976)

    Google Scholar 

  14. Rackoff, C.: The Covering and Boundedness Problems for Vector Addition Systems. Theoretical Computer Science 6, 223–231 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  15. Sen, K., Viswanathan, M.: Model checking multithreaded programs with asynchronous atomic methods. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 300–314. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Valk, R., Jantzen, M.: The residue of vector sets with applications to decidability problems in Petri nets. Acta Informatica 21, 643–674 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  17. Yen, H.-C., Chen, C.-L.: On minimal elements of upward-closed sets. Theoretical Computer Science 410(24-25), 2442–2452 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bozzelli, L., Ganty, P. (2011). Complexity Analysis of the Backward Coverability Algorithm for VASS. In: Delzanno, G., Potapov, I. (eds) Reachability Problems. RP 2011. Lecture Notes in Computer Science, vol 6945. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24288-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24288-5_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24287-8

  • Online ISBN: 978-3-642-24288-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics