[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Smart Phone Sensing to Examine Effects of Social Interactions and Non-sedentary Work Time on Mood Changes

  • Conference paper
Modeling and Using Context (CONTEXT 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6967))

Abstract

The typical approach taken by clinical studies examining the factors that affect mood is to use questionnaires in order to record the activities that impact the mood. However, recording activities in this manner suffers from a number of issues including floor effect and difficulty in recalling past activities. Our work instead has focused on using unobtrusive monitoring technology to study mood changes during office hours and two associated factors that influence these changes, namely social activity and non-sedentary patterns. The pilot study ran over the course of 7 days of measurements with the participation of 9 knowledge workers. The results have shown that mood changes are highly correlated with both social interactions and non-sedentary work style. This study is the first to investigate the correlation between mood changes and non-sedentary behavior patterns, opening up a research avenue to explore psychological effects of increasing prevalence of sedentary behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Vittengl, J.R., Holt, C.S.: A Time-Series Diary Study of Mood and Social Interaction. Motivation and Emotion 22(3), 255–275 (1998)

    Article  Google Scholar 

  2. Dardenne, B., Dumont, M., Gregoire, C., Sarlet, M.: Mood and positive testing in social interaction. European Journal of Social Psychology 41(1), 52–63 (2011)

    Article  Google Scholar 

  3. Robbins, P.R., Tanck, R.H.: A study of diurnal patterns of depressed mood. Motivation and Emotion 11(1), 37–49 (1987)

    Article  Google Scholar 

  4. Berry, D., Hansen, J.S.: Positive affect, negative affect, and Social Interaction. Journal of Personality and Social Psychology 71(4) (October 1996)

    Google Scholar 

  5. Clark, L.A., Watson, D.: Mood and the mundane: Relations between daily life events and self-reported mood. Journal of Personality and Social Psychology 54(2), 296–308 (1988)

    Article  Google Scholar 

  6. Watson, D., Clark, L.A., McIntyre, C.W.: Affect, personality, and social activity. Journal of Personality and Social Psychology 63(3), 1011–1025 (1992)

    Article  Google Scholar 

  7. Stewart, W.F., Ricci, J.A., Chee, E., Hahn, S.R., Morganstein, D.: Cost of lost productive work time along US workers with depression. JAMA 289(23), 3135–3144 (2003)

    Article  Google Scholar 

  8. Denissen, J.J., Butalid, L., Penke, L., Van Aken, M.A.: The effects of weather on daily mood: A multilevel approach. Emotion 8(5), 662–667 (2008)

    Article  Google Scholar 

  9. Volkers, A.C., Tulen, J.H.M., Van Den Broek, W.W.: Relationships between sleep quality and diurnal variations in mood in healthy subjects, 1–5 (1998), http://www.nswo.nl/userfiles/files/publications/jaarboek-1998/volkers.pdf

  10. Tremblay, M.S., Colley, R.C., Saunders, T.J., Healy, G.N., Owen, N.: Psysiological and health implications of a sedentary lifestyle. Applied Physiology, Nutrition, and Metabolism 35(6), 725–740 (2010)

    Article  Google Scholar 

  11. Kwapisz, J., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. Human Factors, 10–18 (2010), http://storm.cis.fordham.edu/~gweiss/papers/sensorKDD-2010.pdf

  12. Mathie, M.J., Coster, A.C.F., Lovell, B.H., Celler, B.G.: Accelerometry: providing an integrated, practical method for long-term, ambulatory monitoring of human movement. Journal of Physiological Measurement 25(2) (2004)

    Google Scholar 

  13. Clark, L.A., Watson, D., Leeka, J.: Diurnal variation in the positive affect. Motivation and Emotion 13(3), 205–234 (1999)

    Article  Google Scholar 

  14. Adan, A., Guardia, J.: Circadian variation of selfreported activations: a multidimensional approach. Chronobiologia 20(3-4), 233–324 (1993)

    Google Scholar 

  15. Hamburg, N.M., McMackin, C.J., Huang, A.L., Shenouda, S.M., Widlansky, M.E., Schulz, E., et al.: Physical inactivity rapidly induces insulin resistance and microvascular dysfunction in healthy volunteers. Arterioscler. Thromb. Vasc. Biol. 27(12), 2650–2656 (2007)

    Article  Google Scholar 

  16. Zwart, S.R., Hargens, A.R., Lee, S.M., Macias, B.R., Watenpaugh, D.E., Tse, K., Smith, S.M.: Lower body negative pressure treadmill exercise as a countermeasure for bed rest-induced bone loss in female identical twins. Bone 40(2), 529–537 (2007)

    Article  Google Scholar 

  17. Hu, F.B., Li, Y.T., Golditz, G.A., Willett, W.C., Manson, J.E.: Television watching and other sedentary behaviors in relation to risk of obesity and type 2 diabetes mellitus in women. JAMA 289(14), 1785–1791 (2003)

    Article  Google Scholar 

  18. Gierach, G.L., Chang, S.C., Brinton, L.A., Lacey, J.V., Hollenbeck, A.R., Schatzkin, A.R.A., Leitzmann, M.F.: Physical activity, sedentary behavior, and endometrial cancer risk in the NIH–AARP Diet and Health Study. Int. J. Cancer 124(9), 2139–2147 (2009)

    Article  Google Scholar 

  19. Martin, C.K., Church, T.S., Thompson, A.M., Earnest, C.P., Blair, S.N.: Exercise dose and quality of life: a randomized controlled trial. Arch. Intern. Med. 169(3), 269–278 (2009)

    Article  Google Scholar 

  20. Sanchez-Villegas, A., Ara, I., Guillén-Grima, F., Bes-Rastrollo, M., Varo-Cenarruzabeitia, J.J., Martínez-González, M.A.: Physical activity, sedentary index, and mental disorders in the SUN cohort study. Med. Sci. Sports Exerc. 40(5), 827–834 (2008)

    Article  Google Scholar 

  21. Matic, A., Popleteev, A., Osmani, V., Mayora, O.: FM radio for indoor localization with spontaneous recalibration. Journal of Pervasive and Mobile Computing 6(6), 642–656 (2010)

    Article  Google Scholar 

  22. Curran, S.L., Andykowski, M.A., Studts, J.L.: Short form of profile of mood states (POMS-SF):Psychometric information. Psychological Assessment 7(1), 80–83 (1995)

    Article  Google Scholar 

  23. Steptoe, A., Wardle, J.: Mood and drinking: a naturalistic diary study of alcohol, coffee and tea. Psychopharmacology 141, 315–321 (1999)

    Article  Google Scholar 

  24. Matic, A., Popleteev, A., Gabrielli, S., Osmani, V., Mayora, O.: Happy or Moody? Why so?: Monitoring daily routines at work and inferring their influence on mood. In: 5th Ubi-Health Workshop in conjunction with UBICOMP2010 Conference, Copenhagen, Denmark (2010)

    Google Scholar 

  25. Mobile Dev&Design, http://mobiledecdesign.com (accessed: February 2011)

  26. Hasler, B.P., Mehl, M.R., Bootzin, R.R., Vazire, S.: Preliminary evidence of diurnal rhythms in everyday behaviors associated with positive affect. Journal of Research in Personality 42(6), 1537–1546 (2008)

    Article  Google Scholar 

  27. Zeng, Z., Pantic, M., Roisman, G.I., Huang, T.S.: A Survey of Affect Recognition Methods: Audio, Visual and Spontaneous Expressions. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(1), 39–58 (2009)

    Article  Google Scholar 

  28. Thayer, R.E.: Problem perception, optimism, and related states as a function of time of day (diurnal rhythm) and moderate exercise: Two arousal systems in interaction. Motivation and Emotion 11(1), 19–36 (1987)

    Article  MathSciNet  Google Scholar 

  29. Wood, C., Magnello, M.E.: Diurnal changes in perceptions of energy and mood. Journal of the Royal Society of Medicine 85(4), 191–194 (1992)

    Google Scholar 

  30. Stone, A.A., Smyth, J.M., Pickering, T., Schwartz, J.: J. Daily mood variability: Form of diurnal patterns and determinants of diurnal patterns. Journal of Applied Social Psychology 26(14), 1286–1305 (2006)

    Article  Google Scholar 

  31. Hon, E.H., Lee, S.T.: Elecetronic Evaluation of the fetal heart rate patterns preceding fetal death, further observations. Am J Obstet Gynec col. 87, 814–826 (1965)

    Google Scholar 

  32. Biocom Technologies – Heart Rate Variability basics, http://www.biocomtech.com/hrv-science/heart-rate-variability-basics (acessed: February 2011)

  33. Wu, W., Lee, J., Chen, H.: Estimation of heart rate variability changes during different visual stimulations using non-invasive real-time ECG monitoring system. In: International Joint Conference on Bioinformatics, System Biology and Intelligent Computing (2009)

    Google Scholar 

  34. Malik, M.: For the Task Force of the ESC and NASPE, “Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation 93(5), 1043–1065 (1996)

    Article  Google Scholar 

  35. Matsuanaga, M., Isowa, T., Miyakoshi, M., Kanayama, N., Mukarami, H., Fukuyama, S., et al.: Associations among positive mood, brain, and cardiovascular activities in an affectively positive situation. Brain Research 1263, 93–103 (2009)

    Article  Google Scholar 

  36. Geisler, F.C.M., Vennewald, N., Kubiak, T., Weber, H.: The impact of heart rate variability on subjective well-being is mediated by emotion regulation. Personality and Individual Differences 49(7), 723–728 (2010)

    Article  Google Scholar 

  37. Taelman, J., Vandeput, S., Spaepen, A., Van Huffel, S.: Influence of Mental Stress on Heart Rate and Heart Rate Variability. In: ECIFMBE 2008 IFMBE Proceedings 22, pp. 1366–1369 (2008)

    Google Scholar 

  38. Shimmer – Wireless Sensing Solutions, http://www.shimmer-research.com (accessed: February 2011)

  39. Olguin, D.O., Gloor, P.A., Pentlandm, A.S.: Capturing Individual and Group Behavior with Wearable Sensors. In: AAAI Spring Symposium on Human Behavior Modeling (2009)

    Google Scholar 

  40. Fishbach, K., Schoder, D., Gloor, P.A.: Analysis of Informal Communications Networks – A case study. Business & Information Systems Engineering 1(2), 140–149 (2009)

    Article  Google Scholar 

  41. RFID Journal, http://www.rfidjournal.com/article/view/4542/1 (accesed May 2011)

  42. Tudor-Locke, C.E., Myers, A.: Challenges and opportunities for measuring physical activity in sedentary adults. Sports Med. 31, 91–100 (2001)

    Article  Google Scholar 

  43. Jennings, G., Nelson, L., Nestel, P., Esler, M., Korner, P., Burton, D., Bazelmans, J.: The effects of changes in physical activity on major cardiovascular risk factors, hemodynamics, symphatetic function, and glucose utilization in man: a controlled study of four levels of activity. Circulation 73, 30–40 (1986)

    Article  Google Scholar 

  44. Reagan, L.: Insulin signaling effects on memory and mood. Current Opinion in Parmacology, Col. 7, 633–637 (2007)

    Article  Google Scholar 

  45. Wells, A., Read, N.W., Macdonald, A.: Effects of Carbohydrate and Lipid on Resting Energy Expenditure, Heart Rate, Sleepiness, and Mood. Physiological Behavior 63(4), 621–628 (1998)

    Article  Google Scholar 

  46. Gonder-Fredericl, L.A., Cox, D.J., Bobbitt, S.A., Pennebaker, J.: Mood changes associated with blood glucose fluctuations in insulin-dependend diabetes mellitus. Health Psychology 8(1), 45–59 (1989)

    Article  Google Scholar 

  47. Hamilton, M.T., Hamilton, D.G., Zderic, T.W.: Role of low energy expenditure and sitting in obesity, metabolic syndrome, type 2 diabetes, and cardiovascular disease. Diabetes 56(11), 2655–2667 (2007); 10.2337/db07-0882. PMID:17827399

    Article  Google Scholar 

  48. Trost, S.G., Mciver, K.L., Pate, R.R.: Conducting accelerometer-based activity assessments in field-based research. Medicine&Science in Sports&Exercise (2005), doi:10.1249/01.mss0000185657.86065.98

    Google Scholar 

  49. Sivula, J., Lake, W.B., Betzold, R.A.: Method and apparatus for implementing activity sensing in a pulse generator, US Patent number 5.052.388 (1989)

    Google Scholar 

  50. Smyth, J.M., Stone, A.A.: Ecological momentary assessment research in behavioral medicine. Journal of Happiness Studies 4, 35–52 (2003)

    Article  Google Scholar 

  51. Healy, G.N., Dunstan, D.W., Salmon, J., Cerin, E.: Breaks in sedentary time: Beneficial associations with metabolic risk. Diabetes care 31(4) (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Matic, A., Osmani, V., Popleteev, A., Mayora-Ibarra, O. (2011). Smart Phone Sensing to Examine Effects of Social Interactions and Non-sedentary Work Time on Mood Changes. In: Beigl, M., Christiansen, H., Roth-Berghofer, T.R., Kofod-Petersen, A., Coventry, K.R., Schmidtke, H.R. (eds) Modeling and Using Context. CONTEXT 2011. Lecture Notes in Computer Science(), vol 6967. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24279-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24279-3_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24278-6

  • Online ISBN: 978-3-642-24279-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics